Toward room-temperature nanoscale skyrmions in ultrathin films

Abstract Breaking the dilemma between small size and room-temperature stability is a necessary prerequisite for skyrmion-based information technology. Here we demonstrate by means of rate theory and an atomistic spin Hamiltonian that the stability of isolated skyrmions in ultrathin ferromagnetic fil...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Anastasiia S. Varentcova, Stephan von Malottki, Maria N. Potkina, Grzegorz Kwiatkowski, Stefan Heinze, Pavel F. Bessarab
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Acceso en línea:https://doaj.org/article/64d3aa9107534faeac119487a4866580
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:64d3aa9107534faeac119487a4866580
record_format dspace
spelling oai:doaj.org-article:64d3aa9107534faeac119487a48665802021-12-02T13:56:11ZToward room-temperature nanoscale skyrmions in ultrathin films10.1038/s41524-020-00453-w2057-3960https://doaj.org/article/64d3aa9107534faeac119487a48665802020-12-01T00:00:00Zhttps://doi.org/10.1038/s41524-020-00453-whttps://doaj.org/toc/2057-3960Abstract Breaking the dilemma between small size and room-temperature stability is a necessary prerequisite for skyrmion-based information technology. Here we demonstrate by means of rate theory and an atomistic spin Hamiltonian that the stability of isolated skyrmions in ultrathin ferromagnetic films can be enhanced by the concerted variation of magnetic interactions while keeping the skyrmion size unchanged. We predict film systems where the lifetime of sub-10 nm skyrmions can reach years at ambient conditions. The long lifetime of such small skyrmions is due to exceptionally large Arrhenius pre-exponential factor and the stabilizing effect of the energy barrier is insignificant at room temperature. A dramatic increase in the pre-exponential factor is achieved thanks to the softening of magnon modes of the skyrmion, thereby increasing the entropy of the skyrmion with respect to the transition state for collapse. Increasing the number of skyrmion deformation modes should be a guiding principle for the realization of nanoscale, room-temperature stable skyrmions.Anastasiia S. VarentcovaStephan von MalottkiMaria N. PotkinaGrzegorz KwiatkowskiStefan HeinzePavel F. BessarabNature PortfolioarticleMaterials of engineering and construction. Mechanics of materialsTA401-492Computer softwareQA76.75-76.765ENnpj Computational Materials, Vol 6, Iss 1, Pp 1-11 (2020)
institution DOAJ
collection DOAJ
language EN
topic Materials of engineering and construction. Mechanics of materials
TA401-492
Computer software
QA76.75-76.765
spellingShingle Materials of engineering and construction. Mechanics of materials
TA401-492
Computer software
QA76.75-76.765
Anastasiia S. Varentcova
Stephan von Malottki
Maria N. Potkina
Grzegorz Kwiatkowski
Stefan Heinze
Pavel F. Bessarab
Toward room-temperature nanoscale skyrmions in ultrathin films
description Abstract Breaking the dilemma between small size and room-temperature stability is a necessary prerequisite for skyrmion-based information technology. Here we demonstrate by means of rate theory and an atomistic spin Hamiltonian that the stability of isolated skyrmions in ultrathin ferromagnetic films can be enhanced by the concerted variation of magnetic interactions while keeping the skyrmion size unchanged. We predict film systems where the lifetime of sub-10 nm skyrmions can reach years at ambient conditions. The long lifetime of such small skyrmions is due to exceptionally large Arrhenius pre-exponential factor and the stabilizing effect of the energy barrier is insignificant at room temperature. A dramatic increase in the pre-exponential factor is achieved thanks to the softening of magnon modes of the skyrmion, thereby increasing the entropy of the skyrmion with respect to the transition state for collapse. Increasing the number of skyrmion deformation modes should be a guiding principle for the realization of nanoscale, room-temperature stable skyrmions.
format article
author Anastasiia S. Varentcova
Stephan von Malottki
Maria N. Potkina
Grzegorz Kwiatkowski
Stefan Heinze
Pavel F. Bessarab
author_facet Anastasiia S. Varentcova
Stephan von Malottki
Maria N. Potkina
Grzegorz Kwiatkowski
Stefan Heinze
Pavel F. Bessarab
author_sort Anastasiia S. Varentcova
title Toward room-temperature nanoscale skyrmions in ultrathin films
title_short Toward room-temperature nanoscale skyrmions in ultrathin films
title_full Toward room-temperature nanoscale skyrmions in ultrathin films
title_fullStr Toward room-temperature nanoscale skyrmions in ultrathin films
title_full_unstemmed Toward room-temperature nanoscale skyrmions in ultrathin films
title_sort toward room-temperature nanoscale skyrmions in ultrathin films
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/64d3aa9107534faeac119487a4866580
work_keys_str_mv AT anastasiiasvarentcova towardroomtemperaturenanoscaleskyrmionsinultrathinfilms
AT stephanvonmalottki towardroomtemperaturenanoscaleskyrmionsinultrathinfilms
AT marianpotkina towardroomtemperaturenanoscaleskyrmionsinultrathinfilms
AT grzegorzkwiatkowski towardroomtemperaturenanoscaleskyrmionsinultrathinfilms
AT stefanheinze towardroomtemperaturenanoscaleskyrmionsinultrathinfilms
AT pavelfbessarab towardroomtemperaturenanoscaleskyrmionsinultrathinfilms
_version_ 1718392382950473728