Landslide Susceptibility Prediction Based on Positive Unlabeled Learning Coupled With Adaptive Sampling
Many studies consider landslide susceptibility prediction as a binary classification problem when using machine learning methods, which requires both landslide and nonlandslide samples for modeling. Nevertheless, there are only landslide and unlabeled areas in the real world, and directly considerin...
Guardado en:
Autores principales: | Zhice Fang, Yi Wang, Ruiqing Niu, Ling Peng |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/64d4a45d731d4ee68fb6e1b2e3b9327b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Landslide Susceptibility Mapping Using Ant Colony Optimization Strategy and Deep Belief Network in Jiuzhaigou Region
por: Yibing Xiong, et al.
Publicado: (2021) -
Landslide Detection Mapping Employing CNN, ResNet, and DenseNet in the Three Gorges Reservoir, China
por: Tong Liu, et al.
Publicado: (2021) -
A Simulation Experiment on In-Situ Observation of Short-Wavelength Scale Dynamic Processes and Potential Applications to Wide-Swath Interferometric Altimetry Validation
por: Chen Wang, et al.
Publicado: (2021) -
Cost-Sensitive Self-Paced Learning With Adaptive Regularization for Classification of Image Time Series
por: Hao Li, et al.
Publicado: (2021) -
Soil Moisture Active/Passive (SMAP) L-Band Microwave Radiometer Post-Launch Calibration Revisit: Approach and Performance
por: Jinzheng Peng, et al.
Publicado: (2021)