Intelligent Fault Diagnosis of Bearing Based on Convolutional Neural Network and Bidirectional Long Short-Term Memory
The traditional bearing fault diagnosis methods have complex operation processes and poor generalization ability, while the diagnosis accuracy of the existing intelligent diagnosis methods needs to be further improved. Therefore, a novel fault diagnosis approach named CNN-BLSTM for bearing is presen...
Guardado en:
Autores principales: | Dazhang You, Linbo Chen, Fei Liu, YePeng Zhang, Wei Shang, Yameng Hu, Wei Liu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi Limited
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/64e8317721a94aec9012bd81e05d7ce7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Novel Intelligent Fault Diagnosis Method for Rolling Bearings Based on Compressed Sensing and Stacked Multi-Granularity Convolution Denoising Auto-Encoder
por: Chuang Liang, et al.
Publicado: (2021) -
Research on Intelligent Fault Diagnosis of Rolling Bearing Based on Improved Deep Residual Network
por: Xinyu Hao, et al.
Publicado: (2021) -
Intelligent Fault Diagnosis and Forecast of Time-Varying Bearing Based on Deep Learning VMD-DenseNet
por: Shih-Lin Lin
Publicado: (2021) -
A Bearing Fault Diagnosis Method Based on PAVME and MEDE
por: Xiaoan Yan, et al.
Publicado: (2021) -
Compound Fault Diagnosis of Rolling Bearing Based on ALIF-KELM
por: Jie Ma, et al.
Publicado: (2021)