Label-free cell cycle analysis for high-throughput imaging flow cytometry

Imaging flow cytometry enables high-throughput acquisition of fluorescence, brightfield and darkfield images of biological cells. Here, Blasi et al.demonstrate that applying machine learning algorithms on brightfield and darkfield images can detect cellular phenotypes without the need for fluorescen...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Thomas Blasi, Holger Hennig, Huw D. Summers, Fabian J. Theis, Joana Cerveira, James O. Patterson, Derek Davies, Andrew Filby, Anne E. Carpenter, Paul Rees
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2016
Materias:
Q
Acceso en línea:https://doaj.org/article/64eccd9285fd45858c93a445b1345a3c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Imaging flow cytometry enables high-throughput acquisition of fluorescence, brightfield and darkfield images of biological cells. Here, Blasi et al.demonstrate that applying machine learning algorithms on brightfield and darkfield images can detect cellular phenotypes without the need for fluorescent stains, enabling label-free assays.