Label-free cell cycle analysis for high-throughput imaging flow cytometry
Imaging flow cytometry enables high-throughput acquisition of fluorescence, brightfield and darkfield images of biological cells. Here, Blasi et al.demonstrate that applying machine learning algorithms on brightfield and darkfield images can detect cellular phenotypes without the need for fluorescen...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2016
|
Materias: | |
Acceso en línea: | https://doaj.org/article/64eccd9285fd45858c93a445b1345a3c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Imaging flow cytometry enables high-throughput acquisition of fluorescence, brightfield and darkfield images of biological cells. Here, Blasi et al.demonstrate that applying machine learning algorithms on brightfield and darkfield images can detect cellular phenotypes without the need for fluorescent stains, enabling label-free assays. |
---|