Label-free cell cycle analysis for high-throughput imaging flow cytometry
Imaging flow cytometry enables high-throughput acquisition of fluorescence, brightfield and darkfield images of biological cells. Here, Blasi et al.demonstrate that applying machine learning algorithms on brightfield and darkfield images can detect cellular phenotypes without the need for fluorescen...
Guardado en:
Autores principales: | Thomas Blasi, Holger Hennig, Huw D. Summers, Fabian J. Theis, Joana Cerveira, James O. Patterson, Derek Davies, Andrew Filby, Anne E. Carpenter, Paul Rees |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2016
|
Materias: | |
Acceso en línea: | https://doaj.org/article/64eccd9285fd45858c93a445b1345a3c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Reconstructing cell cycle and disease progression using deep learning
por: Philipp Eulenberg, et al.
Publicado: (2017) -
Labeling Extracellular Vesicles for Nanoscale Flow Cytometry
por: Aizea Morales-Kastresana, et al.
Publicado: (2017) -
High Throughput Analysis of Golgi Structure by Imaging Flow Cytometry
por: Inbal Wortzel, et al.
Publicado: (2017) -
Multi-angle pulse shape detection of scattered light in flow cytometry for label-free cell cycle classification
por: Daniel Kage, et al.
Publicado: (2021) -
Cell-cycle analysis of fission yeast cells by flow cytometry.
por: Jon Halvor Jonsrud Knutsen, et al.
Publicado: (2011)