Label-free cell cycle analysis for high-throughput imaging flow cytometry
Imaging flow cytometry enables high-throughput acquisition of fluorescence, brightfield and darkfield images of biological cells. Here, Blasi et al.demonstrate that applying machine learning algorithms on brightfield and darkfield images can detect cellular phenotypes without the need for fluorescen...
Enregistré dans:
| Auteurs principaux: | Thomas Blasi, Holger Hennig, Huw D. Summers, Fabian J. Theis, Joana Cerveira, James O. Patterson, Derek Davies, Andrew Filby, Anne E. Carpenter, Paul Rees |
|---|---|
| Format: | article |
| Langue: | EN |
| Publié: |
Nature Portfolio
2016
|
| Sujets: | |
| Accès en ligne: | https://doaj.org/article/64eccd9285fd45858c93a445b1345a3c |
| Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Reconstructing cell cycle and disease progression using deep learning
par: Philipp Eulenberg, et autres
Publié: (2017) -
Labeling Extracellular Vesicles for Nanoscale Flow Cytometry
par: Aizea Morales-Kastresana, et autres
Publié: (2017) -
High Throughput Analysis of Golgi Structure by Imaging Flow Cytometry
par: Inbal Wortzel, et autres
Publié: (2017) -
Multi-angle pulse shape detection of scattered light in flow cytometry for label-free cell cycle classification
par: Daniel Kage, et autres
Publié: (2021) -
Cell-cycle analysis of fission yeast cells by flow cytometry.
par: Jon Halvor Jonsrud Knutsen, et autres
Publié: (2011)