Comparison of dissimilarity measures for cluster analysis of X-ray diffraction data from combinatorial libraries
Machine learning: Spying enhanced materials with x-ray vision Using algorithms to automatically spot variations in massive X-ray diffraction data sets may improve design of multi-component alloys. Having three or more metals in an alloy can lead to overwhelming combinations of possible materials, ea...
Guardado en:
Autores principales: | Yuma Iwasaki, A. Gilad Kusne, Ichiro Takeuchi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/64f79ca4c771418085a08eb761244bfb |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Deep learning for visualization and novelty detection in large X-ray diffraction datasets
por: Lars Banko, et al.
Publicado: (2021) -
A convolutional neural network for defect classification in Bragg coherent X-ray diffraction
por: Bruce Lim, et al.
Publicado: (2021) -
Identification of crystal symmetry from noisy diffraction patterns by a shape analysis and deep learning
por: Leslie Ching Ow Tiong, et al.
Publicado: (2020) -
A deep convolutional neural network for real-time full profile analysis of big powder diffraction data
por: Hongyang Dong, et al.
Publicado: (2021) -
Cobalt-based magnetic Weyl semimetals with high-thermodynamic stabilities
por: Wei Luo, et al.
Publicado: (2021)