A Linearly Involved Generalized Moreau Enhancement of <i>ℓ</i><sub>2,1</sub>-Norm with Application to Weighted Group Sparse Classification

This paper proposes a new group-sparsity-inducing regularizer to approximate <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mo>ℓ</mo><mrow><mn>2</mn><mo>,</mo>&l...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Yang Chen, Masao Yamagishi, Isao Yamada
Format: article
Langue:EN
Publié: MDPI AG 2021
Sujets:
Accès en ligne:https://doaj.org/article/64f9e46ca8f4408a91b5946d0094eaf3
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:This paper proposes a new group-sparsity-inducing regularizer to approximate <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mo>ℓ</mo><mrow><mn>2</mn><mo>,</mo><mn>0</mn></mrow></msub></semantics></math></inline-formula> pseudo-norm. The regularizer is nonconvex, which can be seen as a linearly involved generalized Moreau enhancement of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mo>ℓ</mo><mrow><mn>2</mn><mo>,</mo><mn>1</mn></mrow></msub></semantics></math></inline-formula>-norm. Moreover, the overall convexity of the corresponding group-sparsity-regularized least squares problem can be achieved. The model can handle general group configurations such as weighted group sparse problems, and can be solved through a proximal splitting algorithm. Among the applications, considering that the bias of convex regularizer may lead to incorrect classification results especially for unbalanced training sets, we apply the proposed model to the (weighted) group sparse classification problem. The proposed classifier can use the label, similarity and locality information of samples. It also suppresses the bias of convex regularizer-based classifiers. Experimental results demonstrate that the proposed classifier improves the performance of convex <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mo>ℓ</mo><mrow><mn>2</mn><mo>,</mo><mn>1</mn></mrow></msub></semantics></math></inline-formula> regularizer-based methods, especially when the training data set is unbalanced. This paper enhances the potential applicability and effectiveness of using nonconvex regularizers in the frame of convex optimization.