The Power of Universal Contextualized Protein Embeddings in Cross-species Protein Function Prediction
Computationally annotating proteins with a molecular function is a difficult problem that is made even harder due to the limited amount of available labeled protein training data. Unsupervised protein embeddings partly circumvent this limitation by learning a universal protein representation from ma...
Guardado en:
Autores principales: | Irene van den Bent, Stavros Makrodimitris, Marcel Reinders |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
SAGE Publishing
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6517605b2ea149948d0f7ac12058a55c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Comparison of the Gut Microbiota in Patients with Benign and Malignant Breast Tumors: A Pilot Study
por: Peidong Yang, et al.
Publicado: (2021) -
Correction to: Breaking evolutionary and pleiotropic constraints in mammals: on sloths, manatees and homeotic mutations
por: Irma Varela-Lasheras, et al.
Publicado: (2021) -
Screening of Important Factors in the Early Sepsis Stage Based on the Evaluation of ssGSEA Algorithm and ceRNA Regulatory Network
por: Liou Huang, et al.
Publicado: (2021) -
AURKB as a Promising Prognostic Biomarker in Hepatocellular Carcinoma
por: Jingchuan Xiao, et al.
Publicado: (2021) -
A new species of snake of the genus Oligodon Boie in Fitzinger, 1826 (Reptilia, Serpentes) from the Western Himalayas
por: Zeeshan A. Mirza, et al.
Publicado: (2021)