Deep learning for pulmonary embolism detection on computed tomography pulmonary angiogram: a systematic review and meta-analysis
Abstract Computed tomographic pulmonary angiography (CTPA) is the gold standard for pulmonary embolism (PE) diagnosis. However, this diagnosis is susceptible to misdiagnosis. In this study, we aimed to perform a systematic review of current literature applying deep learning for the diagnosis of PE o...
Enregistré dans:
Auteurs principaux: | Shelly Soffer, Eyal Klang, Orit Shimon, Yiftach Barash, Noa Cahan, Hayit Greenspana, Eli Konen |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/652f12799e464eab8a41b8a92c1cf18a |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Depiction of mosaic perfusion in chronic thromboembolic pulmonary hypertension (CTEPH) on C-arm computed tomography compared to computed tomography pulmonary angiogram (CTPA)
par: Sabine K. Maschke, et autres
Publié: (2021) -
Machine Learning Model for Outcome Prediction of Patients Suffering from Acute Diverticulitis Arriving at the Emergency Department—A Proof of Concept Study
par: Eyal Klang, et autres
Publié: (2021) -
Pulmonary migration of liquid embolization material: An unusual cause of pulmonary embolism
par: James Yeomans, MBChB, et autres
Publié: (2022) -
Pulmonary embolism with chronic obstructive pulmonary disease
par: Ruohan Yang, et autres
Publié: (2021) -
Risk Factors for Pulmonary Embolism in Patients with Paralysis and Deep Venous Thrombosis
par: Karsten Keller, et autres
Publié: (2021)