Reproducibility across single-cell RNA-seq protocols for spatial ordering analysis.

As newer single-cell protocols generate increasingly more cells at reduced sequencing depths, the value of a higher read depth may be overlooked. Using data from three different single-cell RNA-seq protocols that lend themselves to having either higher read depth (Smart-seq) or many cells (MARS-seq...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Morten Seirup, Li-Fang Chu, Srikumar Sengupta, Ning Leng, Hadley Browder, Kevin Kapadia, Christina M Shafer, Bret Duffin, Angela L Elwell, Jennifer M Bolin, Scott Swanson, Ron Stewart, Christina Kendziorski, James A Thomson, Rhonda Bacher
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2020
Materias:
R
Q
Acceso en línea:https://doaj.org/article/653545f9595e443993e4a86848c2c3b4
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:653545f9595e443993e4a86848c2c3b4
record_format dspace
spelling oai:doaj.org-article:653545f9595e443993e4a86848c2c3b42021-12-02T20:05:46ZReproducibility across single-cell RNA-seq protocols for spatial ordering analysis.1932-620310.1371/journal.pone.0239711https://doaj.org/article/653545f9595e443993e4a86848c2c3b42020-01-01T00:00:00Zhttps://doi.org/10.1371/journal.pone.0239711https://doaj.org/toc/1932-6203As newer single-cell protocols generate increasingly more cells at reduced sequencing depths, the value of a higher read depth may be overlooked. Using data from three different single-cell RNA-seq protocols that lend themselves to having either higher read depth (Smart-seq) or many cells (MARS-seq and 10X), we evaluate their ability to recapitulate biological signals in the context of spatial reconstruction. Overall, we find gene expression profiles after spatial reconstruction analysis are highly reproducible between datasets despite being generated by different protocols and using different computational algorithms. While UMI-based protocols such as 10X and MARS-seq allow for capturing more cells, Smart-seq's higher sensitivity and read-depth allow for analysis of lower expressed genes and isoforms. Additionally, we evaluate trade-offs for each protocol by performing subsampling analyses and find that optimizing the balance between sequencing depth and number of cells within a protocol is necessary for efficient use of resources. Our analysis emphasizes the importance of selecting a protocol based on the biological questions and features of interest.Morten SeirupLi-Fang ChuSrikumar SenguptaNing LengHadley BrowderKevin KapadiaChristina M ShaferBret DuffinAngela L ElwellJennifer M BolinScott SwansonRon StewartChristina KendziorskiJames A ThomsonRhonda BacherPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 15, Iss 9, p e0239711 (2020)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Morten Seirup
Li-Fang Chu
Srikumar Sengupta
Ning Leng
Hadley Browder
Kevin Kapadia
Christina M Shafer
Bret Duffin
Angela L Elwell
Jennifer M Bolin
Scott Swanson
Ron Stewart
Christina Kendziorski
James A Thomson
Rhonda Bacher
Reproducibility across single-cell RNA-seq protocols for spatial ordering analysis.
description As newer single-cell protocols generate increasingly more cells at reduced sequencing depths, the value of a higher read depth may be overlooked. Using data from three different single-cell RNA-seq protocols that lend themselves to having either higher read depth (Smart-seq) or many cells (MARS-seq and 10X), we evaluate their ability to recapitulate biological signals in the context of spatial reconstruction. Overall, we find gene expression profiles after spatial reconstruction analysis are highly reproducible between datasets despite being generated by different protocols and using different computational algorithms. While UMI-based protocols such as 10X and MARS-seq allow for capturing more cells, Smart-seq's higher sensitivity and read-depth allow for analysis of lower expressed genes and isoforms. Additionally, we evaluate trade-offs for each protocol by performing subsampling analyses and find that optimizing the balance between sequencing depth and number of cells within a protocol is necessary for efficient use of resources. Our analysis emphasizes the importance of selecting a protocol based on the biological questions and features of interest.
format article
author Morten Seirup
Li-Fang Chu
Srikumar Sengupta
Ning Leng
Hadley Browder
Kevin Kapadia
Christina M Shafer
Bret Duffin
Angela L Elwell
Jennifer M Bolin
Scott Swanson
Ron Stewart
Christina Kendziorski
James A Thomson
Rhonda Bacher
author_facet Morten Seirup
Li-Fang Chu
Srikumar Sengupta
Ning Leng
Hadley Browder
Kevin Kapadia
Christina M Shafer
Bret Duffin
Angela L Elwell
Jennifer M Bolin
Scott Swanson
Ron Stewart
Christina Kendziorski
James A Thomson
Rhonda Bacher
author_sort Morten Seirup
title Reproducibility across single-cell RNA-seq protocols for spatial ordering analysis.
title_short Reproducibility across single-cell RNA-seq protocols for spatial ordering analysis.
title_full Reproducibility across single-cell RNA-seq protocols for spatial ordering analysis.
title_fullStr Reproducibility across single-cell RNA-seq protocols for spatial ordering analysis.
title_full_unstemmed Reproducibility across single-cell RNA-seq protocols for spatial ordering analysis.
title_sort reproducibility across single-cell rna-seq protocols for spatial ordering analysis.
publisher Public Library of Science (PLoS)
publishDate 2020
url https://doaj.org/article/653545f9595e443993e4a86848c2c3b4
work_keys_str_mv AT mortenseirup reproducibilityacrosssinglecellrnaseqprotocolsforspatialorderinganalysis
AT lifangchu reproducibilityacrosssinglecellrnaseqprotocolsforspatialorderinganalysis
AT srikumarsengupta reproducibilityacrosssinglecellrnaseqprotocolsforspatialorderinganalysis
AT ningleng reproducibilityacrosssinglecellrnaseqprotocolsforspatialorderinganalysis
AT hadleybrowder reproducibilityacrosssinglecellrnaseqprotocolsforspatialorderinganalysis
AT kevinkapadia reproducibilityacrosssinglecellrnaseqprotocolsforspatialorderinganalysis
AT christinamshafer reproducibilityacrosssinglecellrnaseqprotocolsforspatialorderinganalysis
AT bretduffin reproducibilityacrosssinglecellrnaseqprotocolsforspatialorderinganalysis
AT angelalelwell reproducibilityacrosssinglecellrnaseqprotocolsforspatialorderinganalysis
AT jennifermbolin reproducibilityacrosssinglecellrnaseqprotocolsforspatialorderinganalysis
AT scottswanson reproducibilityacrosssinglecellrnaseqprotocolsforspatialorderinganalysis
AT ronstewart reproducibilityacrosssinglecellrnaseqprotocolsforspatialorderinganalysis
AT christinakendziorski reproducibilityacrosssinglecellrnaseqprotocolsforspatialorderinganalysis
AT jamesathomson reproducibilityacrosssinglecellrnaseqprotocolsforspatialorderinganalysis
AT rhondabacher reproducibilityacrosssinglecellrnaseqprotocolsforspatialorderinganalysis
_version_ 1718375428683464704