Topological gaps by twisting

All aperiodic systems display an intrinsic degree of freedom, called the phason, and here it is shown that the phason space for twisted bilayered systems is a 2-torus. As a consequence, these systems host the physics of 4-dimensional integer quantum Hall effect, which can be accessed by simply slidi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Matheus I. N. Rosa, Massimo Ruzzene, Emil Prodan
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/654a14cd42154a2eb4c8b40da70c8524
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:654a14cd42154a2eb4c8b40da70c8524
record_format dspace
spelling oai:doaj.org-article:654a14cd42154a2eb4c8b40da70c85242021-12-02T17:52:25ZTopological gaps by twisting10.1038/s42005-021-00630-32399-3650https://doaj.org/article/654a14cd42154a2eb4c8b40da70c85242021-06-01T00:00:00Zhttps://doi.org/10.1038/s42005-021-00630-3https://doaj.org/toc/2399-3650All aperiodic systems display an intrinsic degree of freedom, called the phason, and here it is shown that the phason space for twisted bilayered systems is a 2-torus. As a consequence, these systems host the physics of 4-dimensional integer quantum Hall effect, which can be accessed by simply sliding the layers relative to each other.Matheus I. N. RosaMassimo RuzzeneEmil ProdanNature PortfolioarticleAstrophysicsQB460-466PhysicsQC1-999ENCommunications Physics, Vol 4, Iss 1, Pp 1-10 (2021)
institution DOAJ
collection DOAJ
language EN
topic Astrophysics
QB460-466
Physics
QC1-999
spellingShingle Astrophysics
QB460-466
Physics
QC1-999
Matheus I. N. Rosa
Massimo Ruzzene
Emil Prodan
Topological gaps by twisting
description All aperiodic systems display an intrinsic degree of freedom, called the phason, and here it is shown that the phason space for twisted bilayered systems is a 2-torus. As a consequence, these systems host the physics of 4-dimensional integer quantum Hall effect, which can be accessed by simply sliding the layers relative to each other.
format article
author Matheus I. N. Rosa
Massimo Ruzzene
Emil Prodan
author_facet Matheus I. N. Rosa
Massimo Ruzzene
Emil Prodan
author_sort Matheus I. N. Rosa
title Topological gaps by twisting
title_short Topological gaps by twisting
title_full Topological gaps by twisting
title_fullStr Topological gaps by twisting
title_full_unstemmed Topological gaps by twisting
title_sort topological gaps by twisting
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/654a14cd42154a2eb4c8b40da70c8524
work_keys_str_mv AT matheusinrosa topologicalgapsbytwisting
AT massimoruzzene topologicalgapsbytwisting
AT emilprodan topologicalgapsbytwisting
_version_ 1718379230462476288