Topological gaps by twisting
All aperiodic systems display an intrinsic degree of freedom, called the phason, and here it is shown that the phason space for twisted bilayered systems is a 2-torus. As a consequence, these systems host the physics of 4-dimensional integer quantum Hall effect, which can be accessed by simply slidi...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/654a14cd42154a2eb4c8b40da70c8524 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:654a14cd42154a2eb4c8b40da70c8524 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:654a14cd42154a2eb4c8b40da70c85242021-12-02T17:52:25ZTopological gaps by twisting10.1038/s42005-021-00630-32399-3650https://doaj.org/article/654a14cd42154a2eb4c8b40da70c85242021-06-01T00:00:00Zhttps://doi.org/10.1038/s42005-021-00630-3https://doaj.org/toc/2399-3650All aperiodic systems display an intrinsic degree of freedom, called the phason, and here it is shown that the phason space for twisted bilayered systems is a 2-torus. As a consequence, these systems host the physics of 4-dimensional integer quantum Hall effect, which can be accessed by simply sliding the layers relative to each other.Matheus I. N. RosaMassimo RuzzeneEmil ProdanNature PortfolioarticleAstrophysicsQB460-466PhysicsQC1-999ENCommunications Physics, Vol 4, Iss 1, Pp 1-10 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Astrophysics QB460-466 Physics QC1-999 |
spellingShingle |
Astrophysics QB460-466 Physics QC1-999 Matheus I. N. Rosa Massimo Ruzzene Emil Prodan Topological gaps by twisting |
description |
All aperiodic systems display an intrinsic degree of freedom, called the phason, and here it is shown that the phason space for twisted bilayered systems is a 2-torus. As a consequence, these systems host the physics of 4-dimensional integer quantum Hall effect, which can be accessed by simply sliding the layers relative to each other. |
format |
article |
author |
Matheus I. N. Rosa Massimo Ruzzene Emil Prodan |
author_facet |
Matheus I. N. Rosa Massimo Ruzzene Emil Prodan |
author_sort |
Matheus I. N. Rosa |
title |
Topological gaps by twisting |
title_short |
Topological gaps by twisting |
title_full |
Topological gaps by twisting |
title_fullStr |
Topological gaps by twisting |
title_full_unstemmed |
Topological gaps by twisting |
title_sort |
topological gaps by twisting |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/654a14cd42154a2eb4c8b40da70c8524 |
work_keys_str_mv |
AT matheusinrosa topologicalgapsbytwisting AT massimoruzzene topologicalgapsbytwisting AT emilprodan topologicalgapsbytwisting |
_version_ |
1718379230462476288 |