Quantitative conversion of biomass in giant DNA virus infection

Abstract Bioconversion of organic materials is the foundation of many applications in chemical engineering, microbiology and biochemistry. Herein, we introduce a new methodology to quantitatively determine conversion of biomass in viral infections while simultaneously imaging morphological changes o...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Mikael Kördel, Martin Svenda, Hemanth K. N. Reddy, Emelie Fogelqvist, Komang G. Y. Arsana, Bejan Hamawandi, Muhammet S. Toprak, Hans M. Hertz, Jonas A. Sellberg
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/6551d364f3ea4210a00d5cce1bf4bb5f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:6551d364f3ea4210a00d5cce1bf4bb5f
record_format dspace
spelling oai:doaj.org-article:6551d364f3ea4210a00d5cce1bf4bb5f2021-12-02T13:20:02ZQuantitative conversion of biomass in giant DNA virus infection10.1038/s41598-021-83547-92045-2322https://doaj.org/article/6551d364f3ea4210a00d5cce1bf4bb5f2021-03-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-83547-9https://doaj.org/toc/2045-2322Abstract Bioconversion of organic materials is the foundation of many applications in chemical engineering, microbiology and biochemistry. Herein, we introduce a new methodology to quantitatively determine conversion of biomass in viral infections while simultaneously imaging morphological changes of the host cell. As proof of concept, the viral replication of an unidentified giant DNA virus and the cellular response of an amoebal host are studied using soft X-ray microscopy, titration dilution measurements and thermal gravimetric analysis. We find that virions produced inside the cell are visible from 18 h post infection and their numbers increase gradually to a burst size of 280–660 virions. Due to the large size of the virion and its strong X-ray absorption contrast, we estimate that the burst size corresponds to a conversion of 6–12% of carbonaceous biomass from amoebal host to virus. The occurrence of virion production correlates with the appearance of a possible viral factory and morphological changes in the phagosomes and contractile vacuole complex of the amoeba, whereas the nucleus and nucleolus appear unaffected throughout most of the replication cycle.Mikael KördelMartin SvendaHemanth K. N. ReddyEmelie FogelqvistKomang G. Y. ArsanaBejan HamawandiMuhammet S. ToprakHans M. HertzJonas A. SellbergNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-12 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Mikael Kördel
Martin Svenda
Hemanth K. N. Reddy
Emelie Fogelqvist
Komang G. Y. Arsana
Bejan Hamawandi
Muhammet S. Toprak
Hans M. Hertz
Jonas A. Sellberg
Quantitative conversion of biomass in giant DNA virus infection
description Abstract Bioconversion of organic materials is the foundation of many applications in chemical engineering, microbiology and biochemistry. Herein, we introduce a new methodology to quantitatively determine conversion of biomass in viral infections while simultaneously imaging morphological changes of the host cell. As proof of concept, the viral replication of an unidentified giant DNA virus and the cellular response of an amoebal host are studied using soft X-ray microscopy, titration dilution measurements and thermal gravimetric analysis. We find that virions produced inside the cell are visible from 18 h post infection and their numbers increase gradually to a burst size of 280–660 virions. Due to the large size of the virion and its strong X-ray absorption contrast, we estimate that the burst size corresponds to a conversion of 6–12% of carbonaceous biomass from amoebal host to virus. The occurrence of virion production correlates with the appearance of a possible viral factory and morphological changes in the phagosomes and contractile vacuole complex of the amoeba, whereas the nucleus and nucleolus appear unaffected throughout most of the replication cycle.
format article
author Mikael Kördel
Martin Svenda
Hemanth K. N. Reddy
Emelie Fogelqvist
Komang G. Y. Arsana
Bejan Hamawandi
Muhammet S. Toprak
Hans M. Hertz
Jonas A. Sellberg
author_facet Mikael Kördel
Martin Svenda
Hemanth K. N. Reddy
Emelie Fogelqvist
Komang G. Y. Arsana
Bejan Hamawandi
Muhammet S. Toprak
Hans M. Hertz
Jonas A. Sellberg
author_sort Mikael Kördel
title Quantitative conversion of biomass in giant DNA virus infection
title_short Quantitative conversion of biomass in giant DNA virus infection
title_full Quantitative conversion of biomass in giant DNA virus infection
title_fullStr Quantitative conversion of biomass in giant DNA virus infection
title_full_unstemmed Quantitative conversion of biomass in giant DNA virus infection
title_sort quantitative conversion of biomass in giant dna virus infection
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/6551d364f3ea4210a00d5cce1bf4bb5f
work_keys_str_mv AT mikaelkordel quantitativeconversionofbiomassingiantdnavirusinfection
AT martinsvenda quantitativeconversionofbiomassingiantdnavirusinfection
AT hemanthknreddy quantitativeconversionofbiomassingiantdnavirusinfection
AT emeliefogelqvist quantitativeconversionofbiomassingiantdnavirusinfection
AT komanggyarsana quantitativeconversionofbiomassingiantdnavirusinfection
AT bejanhamawandi quantitativeconversionofbiomassingiantdnavirusinfection
AT muhammetstoprak quantitativeconversionofbiomassingiantdnavirusinfection
AT hansmhertz quantitativeconversionofbiomassingiantdnavirusinfection
AT jonasasellberg quantitativeconversionofbiomassingiantdnavirusinfection
_version_ 1718393215539740672