Deleting a UBE3A substrate rescues impaired hippocampal physiology and learning in Angelman syndrome mice
Abstract In humans, loss-of-function mutations in the UBE3A gene lead to the neurodevelopmental disorder Angelman syndrome (AS). AS patients have severe impairments in speech, learning and memory, and motor coordination, for which there is currently no treatment. In addition, UBE3A is duplicated in...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/65582c1636854f608ecc07c0e17a093b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:65582c1636854f608ecc07c0e17a093b |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:65582c1636854f608ecc07c0e17a093b2021-12-02T18:51:14ZDeleting a UBE3A substrate rescues impaired hippocampal physiology and learning in Angelman syndrome mice10.1038/s41598-021-97898-w2045-2322https://doaj.org/article/65582c1636854f608ecc07c0e17a093b2021-09-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-97898-whttps://doaj.org/toc/2045-2322Abstract In humans, loss-of-function mutations in the UBE3A gene lead to the neurodevelopmental disorder Angelman syndrome (AS). AS patients have severe impairments in speech, learning and memory, and motor coordination, for which there is currently no treatment. In addition, UBE3A is duplicated in > 1–2% of patients with autism spectrum disorders—a further indication of the significant role it plays in brain development. Altered expression of UBE3A, an E3 ubiquitin ligase, is hypothesized to lead to impaired levels of its target proteins, but identifying the contribution of individual UBE3A targets to UBE3A-dependent deficits remains of critical importance. Ephexin5 is a putative UBE3A substrate that has restricted expression early in development, regulates synapse formation during hippocampal development, and is abnormally elevated in AS mice, modeled by maternally-derived Ube3a gene deletion. Here, we report that Ephexin5 can be directly ubiquitylated by UBE3A. Furthermore, removing Ephexin5 from AS mice specifically rescued hippocampus-dependent behaviors, CA1 physiology, and deficits in dendritic spine number. Our findings identify Ephexin5 as a key driver of hippocampal dysfunction and related behavioral deficits in AS mouse models. These results demonstrate the exciting potential of targeting Ephexin5, and possibly other UBE3A substrates, to improve symptoms of AS and other UBE3A-related developmental disorders.Gabrielle L. SellWendy XinEmily K. CookMark A. ZbindenThomas B. SchafferRobert N. O’MeallyRobert N. ColeSeth S. MargolisNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-16 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Gabrielle L. Sell Wendy Xin Emily K. Cook Mark A. Zbinden Thomas B. Schaffer Robert N. O’Meally Robert N. Cole Seth S. Margolis Deleting a UBE3A substrate rescues impaired hippocampal physiology and learning in Angelman syndrome mice |
description |
Abstract In humans, loss-of-function mutations in the UBE3A gene lead to the neurodevelopmental disorder Angelman syndrome (AS). AS patients have severe impairments in speech, learning and memory, and motor coordination, for which there is currently no treatment. In addition, UBE3A is duplicated in > 1–2% of patients with autism spectrum disorders—a further indication of the significant role it plays in brain development. Altered expression of UBE3A, an E3 ubiquitin ligase, is hypothesized to lead to impaired levels of its target proteins, but identifying the contribution of individual UBE3A targets to UBE3A-dependent deficits remains of critical importance. Ephexin5 is a putative UBE3A substrate that has restricted expression early in development, regulates synapse formation during hippocampal development, and is abnormally elevated in AS mice, modeled by maternally-derived Ube3a gene deletion. Here, we report that Ephexin5 can be directly ubiquitylated by UBE3A. Furthermore, removing Ephexin5 from AS mice specifically rescued hippocampus-dependent behaviors, CA1 physiology, and deficits in dendritic spine number. Our findings identify Ephexin5 as a key driver of hippocampal dysfunction and related behavioral deficits in AS mouse models. These results demonstrate the exciting potential of targeting Ephexin5, and possibly other UBE3A substrates, to improve symptoms of AS and other UBE3A-related developmental disorders. |
format |
article |
author |
Gabrielle L. Sell Wendy Xin Emily K. Cook Mark A. Zbinden Thomas B. Schaffer Robert N. O’Meally Robert N. Cole Seth S. Margolis |
author_facet |
Gabrielle L. Sell Wendy Xin Emily K. Cook Mark A. Zbinden Thomas B. Schaffer Robert N. O’Meally Robert N. Cole Seth S. Margolis |
author_sort |
Gabrielle L. Sell |
title |
Deleting a UBE3A substrate rescues impaired hippocampal physiology and learning in Angelman syndrome mice |
title_short |
Deleting a UBE3A substrate rescues impaired hippocampal physiology and learning in Angelman syndrome mice |
title_full |
Deleting a UBE3A substrate rescues impaired hippocampal physiology and learning in Angelman syndrome mice |
title_fullStr |
Deleting a UBE3A substrate rescues impaired hippocampal physiology and learning in Angelman syndrome mice |
title_full_unstemmed |
Deleting a UBE3A substrate rescues impaired hippocampal physiology and learning in Angelman syndrome mice |
title_sort |
deleting a ube3a substrate rescues impaired hippocampal physiology and learning in angelman syndrome mice |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/65582c1636854f608ecc07c0e17a093b |
work_keys_str_mv |
AT gabriellelsell deletingaube3asubstraterescuesimpairedhippocampalphysiologyandlearninginangelmansyndromemice AT wendyxin deletingaube3asubstraterescuesimpairedhippocampalphysiologyandlearninginangelmansyndromemice AT emilykcook deletingaube3asubstraterescuesimpairedhippocampalphysiologyandlearninginangelmansyndromemice AT markazbinden deletingaube3asubstraterescuesimpairedhippocampalphysiologyandlearninginangelmansyndromemice AT thomasbschaffer deletingaube3asubstraterescuesimpairedhippocampalphysiologyandlearninginangelmansyndromemice AT robertnomeally deletingaube3asubstraterescuesimpairedhippocampalphysiologyandlearninginangelmansyndromemice AT robertncole deletingaube3asubstraterescuesimpairedhippocampalphysiologyandlearninginangelmansyndromemice AT sethsmargolis deletingaube3asubstraterescuesimpairedhippocampalphysiologyandlearninginangelmansyndromemice |
_version_ |
1718377450408247296 |