Prediction of algal bloom occurrence based on the naive Bayesian model considering satellite image pixel differences
Bloom occurrence probability prediction is a critical issue for freshwater resource management and protection. As the mechanism of algal blooms is not understood, the construction of prediction model mainly depends on statistical data. Therefore, knowledge on prior bloom occurrence derived from stat...
Guardado en:
Autores principales: | Meng Mu, Yunmei Li, Shun Bi, Heng Lyu, Jie Xu, Shaohua Lei, Song Miao, Shuai Zeng, Zhubin Zheng, Chenggong Du |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6558812c97964613aa85dee33e1d1e7e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Temporal dynamics of the phytoplankton community associated with environmental factors and harmful algal blooms in Acapulco Bay, Mexico
por: Cervantes-Urieta,Víctor A., et al.
Publicado: (2021) -
A bloom of Azadinium polongum in coastal waters off Peru
por: Tillmann,Urban, et al.
Publicado: (2017) -
Predicting coastal algal blooms with environmental factors by machine learning methods
por: Peixuan Yu, et al.
Publicado: (2021) -
A Meta-Analysis on Harmful Algal Bloom (HAB) Detection and Monitoring: A Remote Sensing Perspective
por: Rabia Munsaf Khan, et al.
Publicado: (2021) -
Metabarcoding Analysis of Harmful Algal Bloom Species in the Western Pacific Seamount Regions
por: Qing Xu, et al.
Publicado: (2021)