Fuzzy differential subordinations connected with the linear operator
We obtain several fuzzy differential subordinations by using a linear operator $\mathcal{I}_{m,\gamma}^{n,\alpha}f(z)=z+\sum\limits_{k=2}^{\infty}(1+\gamma( k-1))^nm^{\alpha}(m+k)^{-\alpha}a_kz^k$. Using the linear operator $\mathcal{I}_{m,\gamma}^{n,\alpha},$ we also introduce a class of univalent...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Institute of Mathematics of the Czech Academy of Science
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/655cfc6388d647fd9abb49a64f0088bd |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:655cfc6388d647fd9abb49a64f0088bd |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:655cfc6388d647fd9abb49a64f0088bd2021-11-08T09:59:12ZFuzzy differential subordinations connected with the linear operator0862-79592464-713610.21136/MB.2020.0159-19https://doaj.org/article/655cfc6388d647fd9abb49a64f0088bd2021-12-01T00:00:00Zhttp://mb.math.cas.cz/full/146/4/mb146_4_2.pdfhttps://doaj.org/toc/0862-7959https://doaj.org/toc/2464-7136We obtain several fuzzy differential subordinations by using a linear operator $\mathcal{I}_{m,\gamma}^{n,\alpha}f(z)=z+\sum\limits_{k=2}^{\infty}(1+\gamma( k-1))^nm^{\alpha}(m+k)^{-\alpha}a_kz^k$. Using the linear operator $\mathcal{I}_{m,\gamma}^{n,\alpha},$ we also introduce a class of univalent analytic functions for which we give some properties.Sheza M. El-DeebGeorgia I. OrosInstitute of Mathematics of the Czech Academy of Sciencearticle fuzzy differential subordination fuzzy best dominant linear operatorMathematicsQA1-939ENMathematica Bohemica, Vol 146, Iss 4, Pp 397-406 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
fuzzy differential subordination fuzzy best dominant linear operator Mathematics QA1-939 |
spellingShingle |
fuzzy differential subordination fuzzy best dominant linear operator Mathematics QA1-939 Sheza M. El-Deeb Georgia I. Oros Fuzzy differential subordinations connected with the linear operator |
description |
We obtain several fuzzy differential subordinations by using a linear operator $\mathcal{I}_{m,\gamma}^{n,\alpha}f(z)=z+\sum\limits_{k=2}^{\infty}(1+\gamma( k-1))^nm^{\alpha}(m+k)^{-\alpha}a_kz^k$. Using the linear operator $\mathcal{I}_{m,\gamma}^{n,\alpha},$ we also introduce a class of univalent analytic functions for which we give some properties. |
format |
article |
author |
Sheza M. El-Deeb Georgia I. Oros |
author_facet |
Sheza M. El-Deeb Georgia I. Oros |
author_sort |
Sheza M. El-Deeb |
title |
Fuzzy differential subordinations connected with the linear operator |
title_short |
Fuzzy differential subordinations connected with the linear operator |
title_full |
Fuzzy differential subordinations connected with the linear operator |
title_fullStr |
Fuzzy differential subordinations connected with the linear operator |
title_full_unstemmed |
Fuzzy differential subordinations connected with the linear operator |
title_sort |
fuzzy differential subordinations connected with the linear operator |
publisher |
Institute of Mathematics of the Czech Academy of Science |
publishDate |
2021 |
url |
https://doaj.org/article/655cfc6388d647fd9abb49a64f0088bd |
work_keys_str_mv |
AT shezameldeeb fuzzydifferentialsubordinationsconnectedwiththelinearoperator AT georgiaioros fuzzydifferentialsubordinationsconnectedwiththelinearoperator |
_version_ |
1718442721173045248 |