Predicting Attack Surface Effects on Attack Vectors in an Open Congested Network Transmission Session by Machine Learning
<p>This paper examined the impact of a network attack on a congested transmission session. The research is motivated by the fact that the previous research community has neglected to evaluate security issues related to network congestion environments, and has instead concentrated on resolving...
Enregistré dans:
Auteur principal: | Nahla Aljojo |
---|---|
Format: | article |
Langue: | EN |
Publié: |
International Association of Online Engineering (IAOE)
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/65625e1ea37e48a99b4c8df427619f4e |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Machine learning-based prediction of COVID-19 diagnosis based on symptoms
par: Yazeed Zoabi, et autres
Publié: (2021) -
Comparing machine learning algorithms for predicting ICU admission and mortality in COVID-19
par: Sonu Subudhi, et autres
Publié: (2021) -
Machine learning for outcome predictions of patients with trauma during emergency department care
par: Henry Xiang, et autres
Publié: (2021) -
Machine learning and atherosclerotic cardiovascular disease risk prediction in a multi-ethnic population
par: Andrew Ward, et autres
Publié: (2020) -
The Framing of machine learning risk prediction models illustrated by evaluation of sepsis in general wards
par: Simon Meyer Lauritsen, et autres
Publié: (2021)