Data Mining to Atmospheric Corrosion Process Based on Evidence Fusion
An electrical resistance sensor-based atmospheric corrosion monitor was employed to study the carbon steel corrosion in outdoor atmospheric environments by recording dynamic corrosion data in real-time. Data mining of collected data contributes to uncovering the underlying mechanism of atmospheric c...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/656279e9909f4e09bc8cf55ea292ebf7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:656279e9909f4e09bc8cf55ea292ebf7 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:656279e9909f4e09bc8cf55ea292ebf72021-11-25T18:14:59ZData Mining to Atmospheric Corrosion Process Based on Evidence Fusion10.3390/ma142269541996-1944https://doaj.org/article/656279e9909f4e09bc8cf55ea292ebf72021-11-01T00:00:00Zhttps://www.mdpi.com/1996-1944/14/22/6954https://doaj.org/toc/1996-1944An electrical resistance sensor-based atmospheric corrosion monitor was employed to study the carbon steel corrosion in outdoor atmospheric environments by recording dynamic corrosion data in real-time. Data mining of collected data contributes to uncovering the underlying mechanism of atmospheric corrosion. In this study, it was found that most statistical correlation coefficients do not adapt to outdoor coupled corrosion data. In order to deal with online coupled data, a new machine learning model is proposed from the viewpoint of information fusion. It aims to quantify the contribution of different environmental factors to atmospheric corrosion in different exposure periods. Compared to the commonly used machine learning models of artificial neural networks and support vector machines in the corrosion research field, the experimental results demonstrated the efficiency and superiority of the proposed model on online corrosion data in terms of measuring the importance of atmospheric factors and corrosion prediction accuracy.Jintao MengHao ZhangXue WangYue ZhaoMDPI AGarticleatmospheric corrosioncarbon steeldata miningenvironmental factorevidence theoryTechnologyTElectrical engineering. Electronics. Nuclear engineeringTK1-9971Engineering (General). Civil engineering (General)TA1-2040MicroscopyQH201-278.5Descriptive and experimental mechanicsQC120-168.85ENMaterials, Vol 14, Iss 6954, p 6954 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
atmospheric corrosion carbon steel data mining environmental factor evidence theory Technology T Electrical engineering. Electronics. Nuclear engineering TK1-9971 Engineering (General). Civil engineering (General) TA1-2040 Microscopy QH201-278.5 Descriptive and experimental mechanics QC120-168.85 |
spellingShingle |
atmospheric corrosion carbon steel data mining environmental factor evidence theory Technology T Electrical engineering. Electronics. Nuclear engineering TK1-9971 Engineering (General). Civil engineering (General) TA1-2040 Microscopy QH201-278.5 Descriptive and experimental mechanics QC120-168.85 Jintao Meng Hao Zhang Xue Wang Yue Zhao Data Mining to Atmospheric Corrosion Process Based on Evidence Fusion |
description |
An electrical resistance sensor-based atmospheric corrosion monitor was employed to study the carbon steel corrosion in outdoor atmospheric environments by recording dynamic corrosion data in real-time. Data mining of collected data contributes to uncovering the underlying mechanism of atmospheric corrosion. In this study, it was found that most statistical correlation coefficients do not adapt to outdoor coupled corrosion data. In order to deal with online coupled data, a new machine learning model is proposed from the viewpoint of information fusion. It aims to quantify the contribution of different environmental factors to atmospheric corrosion in different exposure periods. Compared to the commonly used machine learning models of artificial neural networks and support vector machines in the corrosion research field, the experimental results demonstrated the efficiency and superiority of the proposed model on online corrosion data in terms of measuring the importance of atmospheric factors and corrosion prediction accuracy. |
format |
article |
author |
Jintao Meng Hao Zhang Xue Wang Yue Zhao |
author_facet |
Jintao Meng Hao Zhang Xue Wang Yue Zhao |
author_sort |
Jintao Meng |
title |
Data Mining to Atmospheric Corrosion Process Based on Evidence Fusion |
title_short |
Data Mining to Atmospheric Corrosion Process Based on Evidence Fusion |
title_full |
Data Mining to Atmospheric Corrosion Process Based on Evidence Fusion |
title_fullStr |
Data Mining to Atmospheric Corrosion Process Based on Evidence Fusion |
title_full_unstemmed |
Data Mining to Atmospheric Corrosion Process Based on Evidence Fusion |
title_sort |
data mining to atmospheric corrosion process based on evidence fusion |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/656279e9909f4e09bc8cf55ea292ebf7 |
work_keys_str_mv |
AT jintaomeng dataminingtoatmosphericcorrosionprocessbasedonevidencefusion AT haozhang dataminingtoatmosphericcorrosionprocessbasedonevidencefusion AT xuewang dataminingtoatmosphericcorrosionprocessbasedonevidencefusion AT yuezhao dataminingtoatmosphericcorrosionprocessbasedonevidencefusion |
_version_ |
1718411440731193344 |