Screening drug-target interactions with positive-unlabeled learning
Abstract Identifying drug-target interaction (DTI) candidates is crucial for drug repositioning. However, usually only positive DTIs are deposited in known databases, which challenges computational methods to predict novel DTIs due to the lack of negative samples. To overcome this dilemma, researche...
Guardado en:
Autores principales: | Lihong Peng, Wen Zhu, Bo Liao, Yu Duan, Min Chen, Yi Chen, Jialiang Yang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/656e1bfed72c43d39dedc4ea57292f76 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Landslide Susceptibility Prediction Based on Positive Unlabeled Learning Coupled With Adaptive Sampling
por: Zhice Fang, et al.
Publicado: (2021) -
Classification of unlabeled online media
por: Sakthi Kumar Arul Prakash, et al.
Publicado: (2021) -
Editorial: Unsupervised Learning Models for Unlabeled Genomic, Transcriptomic & Proteomic Data
por: Jianing Xi, et al.
Publicado: (2021) -
An Improved Self-Training Method for Positive Unlabeled Time Series Classification Using DTW Barycenter Averaging
por: Jing Li, et al.
Publicado: (2021) -
Millisecond dynamics of an unlabeled amino acid transporter
por: Tina R. Matin, et al.
Publicado: (2020)