Unveiling the orbital texture of 1T-TiTe2 using intrinsic linear dichroism in multidimensional photoemission spectroscopy

Abstract The momentum-dependent orbital character in crystalline solids, referred to as orbital texture, is of capital importance in the emergence of symmetry-broken collective phases, such as charge density waves as well as superconducting and topological states of matter. By performing extreme ult...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Samuel Beaulieu, Michael Schüler, Jakub Schusser, Shuo Dong, Tommaso Pincelli, Julian Maklar, Alexander Neef, Friedrich Reinert, Martin Wolf, Laurenz Rettig, Ján Minár, Ralph Ernstorfer
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/6575b4462c95491b9e66c5fa944a7c4c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:6575b4462c95491b9e66c5fa944a7c4c
record_format dspace
spelling oai:doaj.org-article:6575b4462c95491b9e66c5fa944a7c4c2021-11-21T12:41:49ZUnveiling the orbital texture of 1T-TiTe2 using intrinsic linear dichroism in multidimensional photoemission spectroscopy10.1038/s41535-021-00398-32397-4648https://doaj.org/article/6575b4462c95491b9e66c5fa944a7c4c2021-11-01T00:00:00Zhttps://doi.org/10.1038/s41535-021-00398-3https://doaj.org/toc/2397-4648Abstract The momentum-dependent orbital character in crystalline solids, referred to as orbital texture, is of capital importance in the emergence of symmetry-broken collective phases, such as charge density waves as well as superconducting and topological states of matter. By performing extreme ultraviolet multidimensional angle-resolved photoemission spectroscopy for two different crystal orientations linked to each other by mirror symmetry, we isolate and identify the role of orbital texture in photoemission from the transition metal dichalcogenide 1T-TiTe2. By comparing our experimental results with theoretical calculations based on both a quantitative one-step model of photoemission and an intuitive tight-binding model, we unambiguously demonstrate the link between the momentum-dependent orbital orientation and the emergence of strong intrinsic linear dichroism in the photoelectron angular distributions. Our results represent an important step towards going beyond band structure (eigenvalues) mapping and learning about electronic wavefunction and orbital texture of solids by exploiting matrix element effects in photoemission spectroscopy.Samuel BeaulieuMichael SchülerJakub SchusserShuo DongTommaso PincelliJulian MaklarAlexander NeefFriedrich ReinertMartin WolfLaurenz RettigJán MinárRalph ErnstorferNature PortfolioarticleMaterials of engineering and construction. Mechanics of materialsTA401-492Atomic physics. Constitution and properties of matterQC170-197ENnpj Quantum Materials, Vol 6, Iss 1, Pp 1-11 (2021)
institution DOAJ
collection DOAJ
language EN
topic Materials of engineering and construction. Mechanics of materials
TA401-492
Atomic physics. Constitution and properties of matter
QC170-197
spellingShingle Materials of engineering and construction. Mechanics of materials
TA401-492
Atomic physics. Constitution and properties of matter
QC170-197
Samuel Beaulieu
Michael Schüler
Jakub Schusser
Shuo Dong
Tommaso Pincelli
Julian Maklar
Alexander Neef
Friedrich Reinert
Martin Wolf
Laurenz Rettig
Ján Minár
Ralph Ernstorfer
Unveiling the orbital texture of 1T-TiTe2 using intrinsic linear dichroism in multidimensional photoemission spectroscopy
description Abstract The momentum-dependent orbital character in crystalline solids, referred to as orbital texture, is of capital importance in the emergence of symmetry-broken collective phases, such as charge density waves as well as superconducting and topological states of matter. By performing extreme ultraviolet multidimensional angle-resolved photoemission spectroscopy for two different crystal orientations linked to each other by mirror symmetry, we isolate and identify the role of orbital texture in photoemission from the transition metal dichalcogenide 1T-TiTe2. By comparing our experimental results with theoretical calculations based on both a quantitative one-step model of photoemission and an intuitive tight-binding model, we unambiguously demonstrate the link between the momentum-dependent orbital orientation and the emergence of strong intrinsic linear dichroism in the photoelectron angular distributions. Our results represent an important step towards going beyond band structure (eigenvalues) mapping and learning about electronic wavefunction and orbital texture of solids by exploiting matrix element effects in photoemission spectroscopy.
format article
author Samuel Beaulieu
Michael Schüler
Jakub Schusser
Shuo Dong
Tommaso Pincelli
Julian Maklar
Alexander Neef
Friedrich Reinert
Martin Wolf
Laurenz Rettig
Ján Minár
Ralph Ernstorfer
author_facet Samuel Beaulieu
Michael Schüler
Jakub Schusser
Shuo Dong
Tommaso Pincelli
Julian Maklar
Alexander Neef
Friedrich Reinert
Martin Wolf
Laurenz Rettig
Ján Minár
Ralph Ernstorfer
author_sort Samuel Beaulieu
title Unveiling the orbital texture of 1T-TiTe2 using intrinsic linear dichroism in multidimensional photoemission spectroscopy
title_short Unveiling the orbital texture of 1T-TiTe2 using intrinsic linear dichroism in multidimensional photoemission spectroscopy
title_full Unveiling the orbital texture of 1T-TiTe2 using intrinsic linear dichroism in multidimensional photoemission spectroscopy
title_fullStr Unveiling the orbital texture of 1T-TiTe2 using intrinsic linear dichroism in multidimensional photoemission spectroscopy
title_full_unstemmed Unveiling the orbital texture of 1T-TiTe2 using intrinsic linear dichroism in multidimensional photoemission spectroscopy
title_sort unveiling the orbital texture of 1t-tite2 using intrinsic linear dichroism in multidimensional photoemission spectroscopy
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/6575b4462c95491b9e66c5fa944a7c4c
work_keys_str_mv AT samuelbeaulieu unveilingtheorbitaltextureof1ttite2usingintrinsiclineardichroisminmultidimensionalphotoemissionspectroscopy
AT michaelschuler unveilingtheorbitaltextureof1ttite2usingintrinsiclineardichroisminmultidimensionalphotoemissionspectroscopy
AT jakubschusser unveilingtheorbitaltextureof1ttite2usingintrinsiclineardichroisminmultidimensionalphotoemissionspectroscopy
AT shuodong unveilingtheorbitaltextureof1ttite2usingintrinsiclineardichroisminmultidimensionalphotoemissionspectroscopy
AT tommasopincelli unveilingtheorbitaltextureof1ttite2usingintrinsiclineardichroisminmultidimensionalphotoemissionspectroscopy
AT julianmaklar unveilingtheorbitaltextureof1ttite2usingintrinsiclineardichroisminmultidimensionalphotoemissionspectroscopy
AT alexanderneef unveilingtheorbitaltextureof1ttite2usingintrinsiclineardichroisminmultidimensionalphotoemissionspectroscopy
AT friedrichreinert unveilingtheorbitaltextureof1ttite2usingintrinsiclineardichroisminmultidimensionalphotoemissionspectroscopy
AT martinwolf unveilingtheorbitaltextureof1ttite2usingintrinsiclineardichroisminmultidimensionalphotoemissionspectroscopy
AT laurenzrettig unveilingtheorbitaltextureof1ttite2usingintrinsiclineardichroisminmultidimensionalphotoemissionspectroscopy
AT janminar unveilingtheorbitaltextureof1ttite2usingintrinsiclineardichroisminmultidimensionalphotoemissionspectroscopy
AT ralphernstorfer unveilingtheorbitaltextureof1ttite2usingintrinsiclineardichroisminmultidimensionalphotoemissionspectroscopy
_version_ 1718418827112349696