Computationally predicted energies and properties of defects in GaN
Abstract Recent developments in theoretical techniques have significantly improved the predictive power of density-functional-based calculations. In this review, we discuss how such advancements have enabled improved understanding of native point defects in GaN. We review the methodologies for the c...
Guardado en:
Autores principales: | John L. Lyons, Chris G. Van de Walle |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/657d76a596534112a515e6059bee56eb |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Evolutionary computing and machine learning for discovering of low-energy defect configurations
por: Marco Arrigoni, et al.
Publicado: (2021) -
Computing grain boundary diagrams of thermodynamic and mechanical properties
por: Chongze Hu, et al.
Publicado: (2021) -
Common workflows for computing material properties using different quantum engines
por: Sebastiaan P. Huber, et al.
Publicado: (2021) -
Intersystem crossing and exciton–defect coupling of spin defects in hexagonal boron nitride
por: Tyler J. Smart, et al.
Publicado: (2021) -
Correcting the corrections for charged defects in crystals
por: Aron Walsh
Publicado: (2021)