Computationally predicted energies and properties of defects in GaN
Abstract Recent developments in theoretical techniques have significantly improved the predictive power of density-functional-based calculations. In this review, we discuss how such advancements have enabled improved understanding of native point defects in GaN. We review the methodologies for the c...
Enregistré dans:
Auteurs principaux: | John L. Lyons, Chris G. Van de Walle |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2017
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/657d76a596534112a515e6059bee56eb |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Evolutionary computing and machine learning for discovering of low-energy defect configurations
par: Marco Arrigoni, et autres
Publié: (2021) -
Computing grain boundary diagrams of thermodynamic and mechanical properties
par: Chongze Hu, et autres
Publié: (2021) -
Common workflows for computing material properties using different quantum engines
par: Sebastiaan P. Huber, et autres
Publié: (2021) -
Intersystem crossing and exciton–defect coupling of spin defects in hexagonal boron nitride
par: Tyler J. Smart, et autres
Publié: (2021) -
Correcting the corrections for charged defects in crystals
par: Aron Walsh
Publié: (2021)