Scalable reservoir computing on coherent linear photonic processor

Optical computing holds promise for high-speed, low-energy information processing due to its large bandwidth and ability to multiplex signals. The authors propose a recurrent neural network implementation using reservoir computing architecture in an integrated photonic processor capable of performin...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Mitsumasa Nakajima, Kenji Tanaka, Toshikazu Hashimoto
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/6586e4669831479db118d3aa723a6fda
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:6586e4669831479db118d3aa723a6fda
record_format dspace
spelling oai:doaj.org-article:6586e4669831479db118d3aa723a6fda2021-12-02T12:09:50ZScalable reservoir computing on coherent linear photonic processor10.1038/s42005-021-00519-12399-3650https://doaj.org/article/6586e4669831479db118d3aa723a6fda2021-02-01T00:00:00Zhttps://doi.org/10.1038/s42005-021-00519-1https://doaj.org/toc/2399-3650Optical computing holds promise for high-speed, low-energy information processing due to its large bandwidth and ability to multiplex signals. The authors propose a recurrent neural network implementation using reservoir computing architecture in an integrated photonic processor capable of performing ~10 tera multiplication–accumulation operations per second for each wavelength channel.Mitsumasa NakajimaKenji TanakaToshikazu HashimotoNature PortfolioarticleAstrophysicsQB460-466PhysicsQC1-999ENCommunications Physics, Vol 4, Iss 1, Pp 1-12 (2021)
institution DOAJ
collection DOAJ
language EN
topic Astrophysics
QB460-466
Physics
QC1-999
spellingShingle Astrophysics
QB460-466
Physics
QC1-999
Mitsumasa Nakajima
Kenji Tanaka
Toshikazu Hashimoto
Scalable reservoir computing on coherent linear photonic processor
description Optical computing holds promise for high-speed, low-energy information processing due to its large bandwidth and ability to multiplex signals. The authors propose a recurrent neural network implementation using reservoir computing architecture in an integrated photonic processor capable of performing ~10 tera multiplication–accumulation operations per second for each wavelength channel.
format article
author Mitsumasa Nakajima
Kenji Tanaka
Toshikazu Hashimoto
author_facet Mitsumasa Nakajima
Kenji Tanaka
Toshikazu Hashimoto
author_sort Mitsumasa Nakajima
title Scalable reservoir computing on coherent linear photonic processor
title_short Scalable reservoir computing on coherent linear photonic processor
title_full Scalable reservoir computing on coherent linear photonic processor
title_fullStr Scalable reservoir computing on coherent linear photonic processor
title_full_unstemmed Scalable reservoir computing on coherent linear photonic processor
title_sort scalable reservoir computing on coherent linear photonic processor
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/6586e4669831479db118d3aa723a6fda
work_keys_str_mv AT mitsumasanakajima scalablereservoircomputingoncoherentlinearphotonicprocessor
AT kenjitanaka scalablereservoircomputingoncoherentlinearphotonicprocessor
AT toshikazuhashimoto scalablereservoircomputingoncoherentlinearphotonicprocessor
_version_ 1718394633149480960