Scalable reservoir computing on coherent linear photonic processor
Optical computing holds promise for high-speed, low-energy information processing due to its large bandwidth and ability to multiplex signals. The authors propose a recurrent neural network implementation using reservoir computing architecture in an integrated photonic processor capable of performin...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6586e4669831479db118d3aa723a6fda |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:6586e4669831479db118d3aa723a6fda |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:6586e4669831479db118d3aa723a6fda2021-12-02T12:09:50ZScalable reservoir computing on coherent linear photonic processor10.1038/s42005-021-00519-12399-3650https://doaj.org/article/6586e4669831479db118d3aa723a6fda2021-02-01T00:00:00Zhttps://doi.org/10.1038/s42005-021-00519-1https://doaj.org/toc/2399-3650Optical computing holds promise for high-speed, low-energy information processing due to its large bandwidth and ability to multiplex signals. The authors propose a recurrent neural network implementation using reservoir computing architecture in an integrated photonic processor capable of performing ~10 tera multiplication–accumulation operations per second for each wavelength channel.Mitsumasa NakajimaKenji TanakaToshikazu HashimotoNature PortfolioarticleAstrophysicsQB460-466PhysicsQC1-999ENCommunications Physics, Vol 4, Iss 1, Pp 1-12 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Astrophysics QB460-466 Physics QC1-999 |
spellingShingle |
Astrophysics QB460-466 Physics QC1-999 Mitsumasa Nakajima Kenji Tanaka Toshikazu Hashimoto Scalable reservoir computing on coherent linear photonic processor |
description |
Optical computing holds promise for high-speed, low-energy information processing due to its large bandwidth and ability to multiplex signals. The authors propose a recurrent neural network implementation using reservoir computing architecture in an integrated photonic processor capable of performing ~10 tera multiplication–accumulation operations per second for each wavelength channel. |
format |
article |
author |
Mitsumasa Nakajima Kenji Tanaka Toshikazu Hashimoto |
author_facet |
Mitsumasa Nakajima Kenji Tanaka Toshikazu Hashimoto |
author_sort |
Mitsumasa Nakajima |
title |
Scalable reservoir computing on coherent linear photonic processor |
title_short |
Scalable reservoir computing on coherent linear photonic processor |
title_full |
Scalable reservoir computing on coherent linear photonic processor |
title_fullStr |
Scalable reservoir computing on coherent linear photonic processor |
title_full_unstemmed |
Scalable reservoir computing on coherent linear photonic processor |
title_sort |
scalable reservoir computing on coherent linear photonic processor |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/6586e4669831479db118d3aa723a6fda |
work_keys_str_mv |
AT mitsumasanakajima scalablereservoircomputingoncoherentlinearphotonicprocessor AT kenjitanaka scalablereservoircomputingoncoherentlinearphotonicprocessor AT toshikazuhashimoto scalablereservoircomputingoncoherentlinearphotonicprocessor |
_version_ |
1718394633149480960 |