Cardiac hypoxic resistance and decreasing lactate during maximum apnea in elite breath hold divers

Abstract Breath-hold divers (BHD) enduring apnea for more than 4 min are characterized by resistance to release of reactive oxygen species, reduced sensitivity to hypoxia, and low mitochondrial oxygen consumption in their skeletal muscles similar to northern elephant seals. The muscles and myocardiu...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Thomas Kjeld, Jakob Møller, Kristian Fogh, Egon Godthaab Hansen, Henrik Christian Arendrup, Anders Brenøe Isbrand, Bo Zerahn, Jens Højberg, Ellen Ostenfeld, Henrik Thomsen, Lars Christian Gormsen, Marcus Carlsson
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/659aaf9edb8a4c8ab0a06c2c939b2704
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Breath-hold divers (BHD) enduring apnea for more than 4 min are characterized by resistance to release of reactive oxygen species, reduced sensitivity to hypoxia, and low mitochondrial oxygen consumption in their skeletal muscles similar to northern elephant seals. The muscles and myocardium of harbor seals also exhibit metabolic adaptations including increased cardiac lactate-dehydrogenase-activity, exceeding their hypoxic limit. We hypothesized that the myocardium of BHD possesses similar adaptive mechanisms. During maximum apnea 15O-H2O-PET/CT (n = 6) revealed no myocardial perfusion deficits but increased myocardial blood flow (MBF). Cardiac MRI determined blood oxygen level dependence oxygenation (n = 8) after 4 min of apnea was unaltered compared to rest, whereas cine-MRI demonstrated increased left ventricular wall thickness (LVWT). Arterial blood gases were collected after warm-up and maximum apnea in a pool. At the end of the maximum pool apnea (5 min), arterial saturation decreased to 52%, and lactate decreased 20%. Our findings contrast with previous MR studies of BHD, that reported elevated cardiac troponins and decreased myocardial perfusion after 4 min of apnea. In conclusion, we demonstrated for the first time with 15O-H2O-PET/CT and MRI in elite BHD during maximum apnea, that MBF and LVWT increases while lactate decreases, indicating anaerobic/fat-based cardiac-metabolism similar to diving mammals.