Novel statistical approach for assessing the persistence of the circadian rhythms of social activity from telephone call detail records in older adults
Abstract How circadian rhythms of activity manifest themselves in social life of humans remains one of the most intriguing questions in chronobiology and a major issue for personalized medicine. Over the past years, substantial advances have been made in understanding the personal nature and the rob...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/659bb288def344ac9cb6f75ee9cba7d7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract How circadian rhythms of activity manifest themselves in social life of humans remains one of the most intriguing questions in chronobiology and a major issue for personalized medicine. Over the past years, substantial advances have been made in understanding the personal nature and the robustness—i.e. the persistence—of the circadian rhythms of social activity by the analysis of phone use. At this stage however, the consistency of such advances as their statistical validity remains unclear. The present paper has been specifically designed to address this issue. To this end, we propose a novel statistical procedure for the measurement of the circadian rhythms of social activity which is particularly well-suited for the existing framework of persistence analysis. Furthermore, we illustrate how this procedure works concretely by assessing the persistence of the circadian rhythms of telephone call activity from a 12-month call detail records (CDRs) dataset of adults over than 65 years. The results show the ability of our approach for assessing persistence with a statistical significance. In the field of CDRs analysis, this novel statistical approach can be used for completing the existing methods used to analyze the persistence of the circadian rhythms of a social nature. More importantly, it provides an opportunity to open up the analysis of CDRs for various domains of application in personalized medicine requiring access to statistical significance such as health care monitoring. |
---|