Induced Matchings and the v-Number of Graded Ideals

We give a formula for the v-number of a graded ideal that can be used to compute this number. Then, we show that for the edge ideal <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>I</mi><...

Full description

Saved in:
Bibliographic Details
Main Authors: Gonzalo Grisalde, Enrique Reyes, Rafael H. Villarreal
Format: article
Language:EN
Published: MDPI AG 2021
Subjects:
Online Access:https://doaj.org/article/659ec7b0da7e42ca9d4fefed4cd2bc1e
Tags: Add Tag
No Tags, Be the first to tag this record!
id oai:doaj.org-article:659ec7b0da7e42ca9d4fefed4cd2bc1e
record_format dspace
spelling oai:doaj.org-article:659ec7b0da7e42ca9d4fefed4cd2bc1e2021-11-25T18:16:39ZInduced Matchings and the v-Number of Graded Ideals10.3390/math92228602227-7390https://doaj.org/article/659ec7b0da7e42ca9d4fefed4cd2bc1e2021-11-01T00:00:00Zhttps://www.mdpi.com/2227-7390/9/22/2860https://doaj.org/toc/2227-7390We give a formula for the v-number of a graded ideal that can be used to compute this number. Then, we show that for the edge ideal <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>I</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></semantics></math></inline-formula> of a graph <i>G</i>, the induced matching number of <i>G</i> is an upper bound for the v-number of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>I</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></semantics></math></inline-formula> when <i>G</i> is very well-covered, or <i>G</i> has a simplicial partition, or <i>G</i> is well-covered connected and contains neither four, nor five cycles. In all these cases, the v-number of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>I</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></semantics></math></inline-formula> is a lower bound for the regularity of the edge ring of <i>G</i>. We classify when the induced matching number of <i>G</i> is an upper bound for the v-number of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>I</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></semantics></math></inline-formula> when <i>G</i> is a cycle and classify when all vertices of a graph are shedding vertices to gain insight into the family of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>W</mi><mn>2</mn></msub></semantics></math></inline-formula>-graphs.Gonzalo GrisaldeEnrique ReyesRafael H. VillarrealMDPI AGarticlegraded idealsv-numberinduced matchingsedge idealsregularityvery well-covered graphsMathematicsQA1-939ENMathematics, Vol 9, Iss 2860, p 2860 (2021)
institution DOAJ
collection DOAJ
language EN
topic graded ideals
v-number
induced matchings
edge ideals
regularity
very well-covered graphs
Mathematics
QA1-939
spellingShingle graded ideals
v-number
induced matchings
edge ideals
regularity
very well-covered graphs
Mathematics
QA1-939
Gonzalo Grisalde
Enrique Reyes
Rafael H. Villarreal
Induced Matchings and the v-Number of Graded Ideals
description We give a formula for the v-number of a graded ideal that can be used to compute this number. Then, we show that for the edge ideal <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>I</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></semantics></math></inline-formula> of a graph <i>G</i>, the induced matching number of <i>G</i> is an upper bound for the v-number of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>I</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></semantics></math></inline-formula> when <i>G</i> is very well-covered, or <i>G</i> has a simplicial partition, or <i>G</i> is well-covered connected and contains neither four, nor five cycles. In all these cases, the v-number of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>I</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></semantics></math></inline-formula> is a lower bound for the regularity of the edge ring of <i>G</i>. We classify when the induced matching number of <i>G</i> is an upper bound for the v-number of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>I</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></semantics></math></inline-formula> when <i>G</i> is a cycle and classify when all vertices of a graph are shedding vertices to gain insight into the family of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>W</mi><mn>2</mn></msub></semantics></math></inline-formula>-graphs.
format article
author Gonzalo Grisalde
Enrique Reyes
Rafael H. Villarreal
author_facet Gonzalo Grisalde
Enrique Reyes
Rafael H. Villarreal
author_sort Gonzalo Grisalde
title Induced Matchings and the v-Number of Graded Ideals
title_short Induced Matchings and the v-Number of Graded Ideals
title_full Induced Matchings and the v-Number of Graded Ideals
title_fullStr Induced Matchings and the v-Number of Graded Ideals
title_full_unstemmed Induced Matchings and the v-Number of Graded Ideals
title_sort induced matchings and the v-number of graded ideals
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/659ec7b0da7e42ca9d4fefed4cd2bc1e
work_keys_str_mv AT gonzalogrisalde inducedmatchingsandthevnumberofgradedideals
AT enriquereyes inducedmatchingsandthevnumberofgradedideals
AT rafaelhvillarreal inducedmatchingsandthevnumberofgradedideals
_version_ 1718411385559318528