Induced Matchings and the v-Number of Graded Ideals
We give a formula for the v-number of a graded ideal that can be used to compute this number. Then, we show that for the edge ideal <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>I</mi><...
Saved in:
Main Authors: | , , |
---|---|
Format: | article |
Language: | EN |
Published: |
MDPI AG
2021
|
Subjects: | |
Online Access: | https://doaj.org/article/659ec7b0da7e42ca9d4fefed4cd2bc1e |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
oai:doaj.org-article:659ec7b0da7e42ca9d4fefed4cd2bc1e |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:659ec7b0da7e42ca9d4fefed4cd2bc1e2021-11-25T18:16:39ZInduced Matchings and the v-Number of Graded Ideals10.3390/math92228602227-7390https://doaj.org/article/659ec7b0da7e42ca9d4fefed4cd2bc1e2021-11-01T00:00:00Zhttps://www.mdpi.com/2227-7390/9/22/2860https://doaj.org/toc/2227-7390We give a formula for the v-number of a graded ideal that can be used to compute this number. Then, we show that for the edge ideal <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>I</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></semantics></math></inline-formula> of a graph <i>G</i>, the induced matching number of <i>G</i> is an upper bound for the v-number of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>I</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></semantics></math></inline-formula> when <i>G</i> is very well-covered, or <i>G</i> has a simplicial partition, or <i>G</i> is well-covered connected and contains neither four, nor five cycles. In all these cases, the v-number of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>I</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></semantics></math></inline-formula> is a lower bound for the regularity of the edge ring of <i>G</i>. We classify when the induced matching number of <i>G</i> is an upper bound for the v-number of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>I</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></semantics></math></inline-formula> when <i>G</i> is a cycle and classify when all vertices of a graph are shedding vertices to gain insight into the family of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>W</mi><mn>2</mn></msub></semantics></math></inline-formula>-graphs.Gonzalo GrisaldeEnrique ReyesRafael H. VillarrealMDPI AGarticlegraded idealsv-numberinduced matchingsedge idealsregularityvery well-covered graphsMathematicsQA1-939ENMathematics, Vol 9, Iss 2860, p 2860 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
graded ideals v-number induced matchings edge ideals regularity very well-covered graphs Mathematics QA1-939 |
spellingShingle |
graded ideals v-number induced matchings edge ideals regularity very well-covered graphs Mathematics QA1-939 Gonzalo Grisalde Enrique Reyes Rafael H. Villarreal Induced Matchings and the v-Number of Graded Ideals |
description |
We give a formula for the v-number of a graded ideal that can be used to compute this number. Then, we show that for the edge ideal <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>I</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></semantics></math></inline-formula> of a graph <i>G</i>, the induced matching number of <i>G</i> is an upper bound for the v-number of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>I</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></semantics></math></inline-formula> when <i>G</i> is very well-covered, or <i>G</i> has a simplicial partition, or <i>G</i> is well-covered connected and contains neither four, nor five cycles. In all these cases, the v-number of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>I</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></semantics></math></inline-formula> is a lower bound for the regularity of the edge ring of <i>G</i>. We classify when the induced matching number of <i>G</i> is an upper bound for the v-number of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>I</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></semantics></math></inline-formula> when <i>G</i> is a cycle and classify when all vertices of a graph are shedding vertices to gain insight into the family of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>W</mi><mn>2</mn></msub></semantics></math></inline-formula>-graphs. |
format |
article |
author |
Gonzalo Grisalde Enrique Reyes Rafael H. Villarreal |
author_facet |
Gonzalo Grisalde Enrique Reyes Rafael H. Villarreal |
author_sort |
Gonzalo Grisalde |
title |
Induced Matchings and the v-Number of Graded Ideals |
title_short |
Induced Matchings and the v-Number of Graded Ideals |
title_full |
Induced Matchings and the v-Number of Graded Ideals |
title_fullStr |
Induced Matchings and the v-Number of Graded Ideals |
title_full_unstemmed |
Induced Matchings and the v-Number of Graded Ideals |
title_sort |
induced matchings and the v-number of graded ideals |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/659ec7b0da7e42ca9d4fefed4cd2bc1e |
work_keys_str_mv |
AT gonzalogrisalde inducedmatchingsandthevnumberofgradedideals AT enriquereyes inducedmatchingsandthevnumberofgradedideals AT rafaelhvillarreal inducedmatchingsandthevnumberofgradedideals |
_version_ |
1718411385559318528 |