Autonomous extraction of millimeter-scale deformation in InSAR time series using deep learning
A deep neural network is developed to automatically extract ground deformation from Interferometric Synthetic Aperture Radar time series. Applied to data over the North Anatolian Fault, the method can detect 2 mm deformation transients and reveals a slow earthquake twice as extensive as previously r...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/65a14e05f4c846dcb44ba44718e995af |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | A deep neural network is developed to automatically extract ground deformation from Interferometric Synthetic Aperture Radar time series. Applied to data over the North Anatolian Fault, the method can detect 2 mm deformation transients and reveals a slow earthquake twice as extensive as previously recognized. |
---|