Autonomous extraction of millimeter-scale deformation in InSAR time series using deep learning

A deep neural network is developed to automatically extract ground deformation from Interferometric Synthetic Aperture Radar time series. Applied to data over the North Anatolian Fault, the method can detect 2 mm deformation transients and reveals a slow earthquake twice as extensive as previously r...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Bertrand Rouet-Leduc, Romain Jolivet, Manon Dalaison, Paul A. Johnson, Claudia Hulbert
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/65a14e05f4c846dcb44ba44718e995af
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:65a14e05f4c846dcb44ba44718e995af
record_format dspace
spelling oai:doaj.org-article:65a14e05f4c846dcb44ba44718e995af2021-11-14T12:34:33ZAutonomous extraction of millimeter-scale deformation in InSAR time series using deep learning10.1038/s41467-021-26254-32041-1723https://doaj.org/article/65a14e05f4c846dcb44ba44718e995af2021-11-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-26254-3https://doaj.org/toc/2041-1723A deep neural network is developed to automatically extract ground deformation from Interferometric Synthetic Aperture Radar time series. Applied to data over the North Anatolian Fault, the method can detect 2 mm deformation transients and reveals a slow earthquake twice as extensive as previously recognized.Bertrand Rouet-LeducRomain JolivetManon DalaisonPaul A. JohnsonClaudia HulbertNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-11 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Bertrand Rouet-Leduc
Romain Jolivet
Manon Dalaison
Paul A. Johnson
Claudia Hulbert
Autonomous extraction of millimeter-scale deformation in InSAR time series using deep learning
description A deep neural network is developed to automatically extract ground deformation from Interferometric Synthetic Aperture Radar time series. Applied to data over the North Anatolian Fault, the method can detect 2 mm deformation transients and reveals a slow earthquake twice as extensive as previously recognized.
format article
author Bertrand Rouet-Leduc
Romain Jolivet
Manon Dalaison
Paul A. Johnson
Claudia Hulbert
author_facet Bertrand Rouet-Leduc
Romain Jolivet
Manon Dalaison
Paul A. Johnson
Claudia Hulbert
author_sort Bertrand Rouet-Leduc
title Autonomous extraction of millimeter-scale deformation in InSAR time series using deep learning
title_short Autonomous extraction of millimeter-scale deformation in InSAR time series using deep learning
title_full Autonomous extraction of millimeter-scale deformation in InSAR time series using deep learning
title_fullStr Autonomous extraction of millimeter-scale deformation in InSAR time series using deep learning
title_full_unstemmed Autonomous extraction of millimeter-scale deformation in InSAR time series using deep learning
title_sort autonomous extraction of millimeter-scale deformation in insar time series using deep learning
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/65a14e05f4c846dcb44ba44718e995af
work_keys_str_mv AT bertrandrouetleduc autonomousextractionofmillimeterscaledeformationininsartimeseriesusingdeeplearning
AT romainjolivet autonomousextractionofmillimeterscaledeformationininsartimeseriesusingdeeplearning
AT manondalaison autonomousextractionofmillimeterscaledeformationininsartimeseriesusingdeeplearning
AT paulajohnson autonomousextractionofmillimeterscaledeformationininsartimeseriesusingdeeplearning
AT claudiahulbert autonomousextractionofmillimeterscaledeformationininsartimeseriesusingdeeplearning
_version_ 1718429110160588800