Autonomous extraction of millimeter-scale deformation in InSAR time series using deep learning
A deep neural network is developed to automatically extract ground deformation from Interferometric Synthetic Aperture Radar time series. Applied to data over the North Anatolian Fault, the method can detect 2 mm deformation transients and reveals a slow earthquake twice as extensive as previously r...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/65a14e05f4c846dcb44ba44718e995af |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:65a14e05f4c846dcb44ba44718e995af |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:65a14e05f4c846dcb44ba44718e995af2021-11-14T12:34:33ZAutonomous extraction of millimeter-scale deformation in InSAR time series using deep learning10.1038/s41467-021-26254-32041-1723https://doaj.org/article/65a14e05f4c846dcb44ba44718e995af2021-11-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-26254-3https://doaj.org/toc/2041-1723A deep neural network is developed to automatically extract ground deformation from Interferometric Synthetic Aperture Radar time series. Applied to data over the North Anatolian Fault, the method can detect 2 mm deformation transients and reveals a slow earthquake twice as extensive as previously recognized.Bertrand Rouet-LeducRomain JolivetManon DalaisonPaul A. JohnsonClaudia HulbertNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-11 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Bertrand Rouet-Leduc Romain Jolivet Manon Dalaison Paul A. Johnson Claudia Hulbert Autonomous extraction of millimeter-scale deformation in InSAR time series using deep learning |
description |
A deep neural network is developed to automatically extract ground deformation from Interferometric Synthetic Aperture Radar time series. Applied to data over the North Anatolian Fault, the method can detect 2 mm deformation transients and reveals a slow earthquake twice as extensive as previously recognized. |
format |
article |
author |
Bertrand Rouet-Leduc Romain Jolivet Manon Dalaison Paul A. Johnson Claudia Hulbert |
author_facet |
Bertrand Rouet-Leduc Romain Jolivet Manon Dalaison Paul A. Johnson Claudia Hulbert |
author_sort |
Bertrand Rouet-Leduc |
title |
Autonomous extraction of millimeter-scale deformation in InSAR time series using deep learning |
title_short |
Autonomous extraction of millimeter-scale deformation in InSAR time series using deep learning |
title_full |
Autonomous extraction of millimeter-scale deformation in InSAR time series using deep learning |
title_fullStr |
Autonomous extraction of millimeter-scale deformation in InSAR time series using deep learning |
title_full_unstemmed |
Autonomous extraction of millimeter-scale deformation in InSAR time series using deep learning |
title_sort |
autonomous extraction of millimeter-scale deformation in insar time series using deep learning |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/65a14e05f4c846dcb44ba44718e995af |
work_keys_str_mv |
AT bertrandrouetleduc autonomousextractionofmillimeterscaledeformationininsartimeseriesusingdeeplearning AT romainjolivet autonomousextractionofmillimeterscaledeformationininsartimeseriesusingdeeplearning AT manondalaison autonomousextractionofmillimeterscaledeformationininsartimeseriesusingdeeplearning AT paulajohnson autonomousextractionofmillimeterscaledeformationininsartimeseriesusingdeeplearning AT claudiahulbert autonomousextractionofmillimeterscaledeformationininsartimeseriesusingdeeplearning |
_version_ |
1718429110160588800 |