Autonomous extraction of millimeter-scale deformation in InSAR time series using deep learning
A deep neural network is developed to automatically extract ground deformation from Interferometric Synthetic Aperture Radar time series. Applied to data over the North Anatolian Fault, the method can detect 2 mm deformation transients and reveals a slow earthquake twice as extensive as previously r...
Guardado en:
Autores principales: | Bertrand Rouet-Leduc, Romain Jolivet, Manon Dalaison, Paul A. Johnson, Claudia Hulbert |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/65a14e05f4c846dcb44ba44718e995af |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
An exponential build-up in seismic energy suggests a months-long nucleation of slow slip in Cascadia
por: Claudia Hulbert, et al.
Publicado: (2020) -
Modeling Saline Mudflat and Aquifer Deformation Synthesizing Environmental and Hydrogeological Factors Using Time-Series InSAR
por: Wei Xiang, et al.
Publicado: (2021) -
InSAR surface deformation and numeric modeling unravel an active salt diapir in southern Romania
por: Vlad Constantin Manea, et al.
Publicado: (2021) -
Accuracy Verification and Correction of D-InSAR and SBAS-InSAR in Monitoring Mining Surface Subsidence
por: Yang Chen, et al.
Publicado: (2021) -
An Improved GNSS and InSAR Fusion Method for Monitoring the 3D Deformation of a Mining Area
por: Wentao Zhou, et al.
Publicado: (2021)