Combining multi-site magnetic resonance imaging with machine learning predicts survival in pediatric brain tumors
Abstract Brain tumors represent the highest cause of mortality in the pediatric oncological population. Diagnosis is commonly performed with magnetic resonance imaging. Survival biomarkers are challenging to identify due to the relatively low numbers of individual tumor types. 69 children with biops...
Enregistré dans:
Auteurs principaux: | James T. Grist, Stephanie Withey, Christopher Bennett, Heather E. L. Rose, Lesley MacPherson, Adam Oates, Stephen Powell, Jan Novak, Laurence Abernethy, Barry Pizer, Simon Bailey, Steven C. Clifford, Dipayan Mitra, Theodoros N. Arvanitis, Dorothee P. Auer, Shivaram Avula, Richard Grundy, Andrew C. Peet |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/65b300bcf0904636b1d39deb984c2b8c |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Classification of paediatric brain tumours by diffusion weighted imaging and machine learning
par: Jan Novak, et autres
Publié: (2021) -
Survey of the preparation, publishing and printing of educational materials for the Caribbean
par: MacPherson, John
Publié: (2014) -
On a general class of gamma based copulas
par: Arnold Barry C., et autres
Publié: (2021) -
Evaluating pediatrics residents’ ethics learning needs using multisource interprofessional feedback
par: Peter MacPherson, et autres
Publié: (2017) -
How immersive virtual reality methods may meet the criteria of the National Academy of Neuropsychology and American Academy of Clinical Neuropsychology: A software review of the Virtual Reality Everyday Assessment Lab (VR-EAL)
par: Panagiotis Kourtesis, et autres
Publié: (2021)