Combining multi-site magnetic resonance imaging with machine learning predicts survival in pediatric brain tumors
Abstract Brain tumors represent the highest cause of mortality in the pediatric oncological population. Diagnosis is commonly performed with magnetic resonance imaging. Survival biomarkers are challenging to identify due to the relatively low numbers of individual tumor types. 69 children with biops...
Guardado en:
Autores principales: | James T. Grist, Stephanie Withey, Christopher Bennett, Heather E. L. Rose, Lesley MacPherson, Adam Oates, Stephen Powell, Jan Novak, Laurence Abernethy, Barry Pizer, Simon Bailey, Steven C. Clifford, Dipayan Mitra, Theodoros N. Arvanitis, Dorothee P. Auer, Shivaram Avula, Richard Grundy, Andrew C. Peet |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/65b300bcf0904636b1d39deb984c2b8c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Classification of paediatric brain tumours by diffusion weighted imaging and machine learning
por: Jan Novak, et al.
Publicado: (2021) -
Survey of the preparation, publishing and printing of educational materials for the Caribbean
por: MacPherson, John
Publicado: (2014) -
On a general class of gamma based copulas
por: Arnold Barry C., et al.
Publicado: (2021) -
Evaluating pediatrics residents’ ethics learning needs using multisource interprofessional feedback
por: Peter MacPherson, et al.
Publicado: (2017) -
How immersive virtual reality methods may meet the criteria of the National Academy of Neuropsychology and American Academy of Clinical Neuropsychology: A software review of the Virtual Reality Everyday Assessment Lab (VR-EAL)
por: Panagiotis Kourtesis, et al.
Publicado: (2021)