Pemodelan Identifikasi Trafik Bittorrent Dengan Pendekatan Correlation Based Feature Selection (CFS) Menggunakan Algoritme Decision Tree (C4.5)

Abstract— BitTorrent is a P2P file sharing software protocol that allows clients to apply data to other clients and can affect network performance. Bittorent client traffic data collection uses secondary data taken from official sources on the link https://unb.ca/cic/datasets/index.html in 2016. Tra...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Hesmi Aria Yanti, Heru Sukoco, Shelvie Nidya Neyman
Formato: article
Lenguaje:ID
Publicado: Universitas Negeri Medan 2021
Materias:
Acceso en línea:https://doaj.org/article/65bb0e8f136b4c7f9c072826ab21009d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:65bb0e8f136b4c7f9c072826ab21009d
record_format dspace
spelling oai:doaj.org-article:65bb0e8f136b4c7f9c072826ab21009d2021-11-27T05:26:26ZPemodelan Identifikasi Trafik Bittorrent Dengan Pendekatan Correlation Based Feature Selection (CFS) Menggunakan Algoritme Decision Tree (C4.5)2502-71312502-714X10.24114/cess.v6i1.20855https://doaj.org/article/65bb0e8f136b4c7f9c072826ab21009d2021-01-01T00:00:00Zhttps://jurnal.unimed.ac.id/2012/index.php/cess/article/view/20855https://doaj.org/toc/2502-7131https://doaj.org/toc/2502-714XAbstract— BitTorrent is a P2P file sharing software protocol that allows clients to apply data to other clients and can affect network performance. Bittorent client traffic data collection uses secondary data taken from official sources on the link https://unb.ca/cic/datasets/index.html in 2016. Traffic data is used as a model for BitTorrent traffic identification using feature-based correlation selection (CFS) and traffic analysis model analysis using Decision Tree Algorithm (C4.5). Feature selection is done to clean irrelevant features so that they can affect the results of the accuracy value. The results of feature selection obtained 7 features and 1 category with 244,689 records and the system connecting the rule tree data training model selected the four best accuracy values. Furthermore, the model training data is carried out by testing the BitTorrent traffic trial data. The results of data testing obtained the best BitTorrent traffic accuracy value of 98.82% with 73,406 records on the 30% data test.   Keywords— BitTorrent, C4.5 algorithm, correlation based feature selection, traffic identification, modeling.Hesmi Aria YantiHeru SukocoShelvie Nidya NeymanUniversitas Negeri Medanarticlebittorrentc4.5 algorithmcorrelation based feature selectiontraffic identificationmodelingElectronic computers. Computer scienceQA75.5-76.95IDCESS (Journal of Computer Engineering, System and Science), Vol 6, Iss 1, Pp 1-9 (2021)
institution DOAJ
collection DOAJ
language ID
topic bittorrent
c4.5 algorithm
correlation based feature selection
traffic identification
modeling
Electronic computers. Computer science
QA75.5-76.95
spellingShingle bittorrent
c4.5 algorithm
correlation based feature selection
traffic identification
modeling
Electronic computers. Computer science
QA75.5-76.95
Hesmi Aria Yanti
Heru Sukoco
Shelvie Nidya Neyman
Pemodelan Identifikasi Trafik Bittorrent Dengan Pendekatan Correlation Based Feature Selection (CFS) Menggunakan Algoritme Decision Tree (C4.5)
description Abstract— BitTorrent is a P2P file sharing software protocol that allows clients to apply data to other clients and can affect network performance. Bittorent client traffic data collection uses secondary data taken from official sources on the link https://unb.ca/cic/datasets/index.html in 2016. Traffic data is used as a model for BitTorrent traffic identification using feature-based correlation selection (CFS) and traffic analysis model analysis using Decision Tree Algorithm (C4.5). Feature selection is done to clean irrelevant features so that they can affect the results of the accuracy value. The results of feature selection obtained 7 features and 1 category with 244,689 records and the system connecting the rule tree data training model selected the four best accuracy values. Furthermore, the model training data is carried out by testing the BitTorrent traffic trial data. The results of data testing obtained the best BitTorrent traffic accuracy value of 98.82% with 73,406 records on the 30% data test.   Keywords— BitTorrent, C4.5 algorithm, correlation based feature selection, traffic identification, modeling.
format article
author Hesmi Aria Yanti
Heru Sukoco
Shelvie Nidya Neyman
author_facet Hesmi Aria Yanti
Heru Sukoco
Shelvie Nidya Neyman
author_sort Hesmi Aria Yanti
title Pemodelan Identifikasi Trafik Bittorrent Dengan Pendekatan Correlation Based Feature Selection (CFS) Menggunakan Algoritme Decision Tree (C4.5)
title_short Pemodelan Identifikasi Trafik Bittorrent Dengan Pendekatan Correlation Based Feature Selection (CFS) Menggunakan Algoritme Decision Tree (C4.5)
title_full Pemodelan Identifikasi Trafik Bittorrent Dengan Pendekatan Correlation Based Feature Selection (CFS) Menggunakan Algoritme Decision Tree (C4.5)
title_fullStr Pemodelan Identifikasi Trafik Bittorrent Dengan Pendekatan Correlation Based Feature Selection (CFS) Menggunakan Algoritme Decision Tree (C4.5)
title_full_unstemmed Pemodelan Identifikasi Trafik Bittorrent Dengan Pendekatan Correlation Based Feature Selection (CFS) Menggunakan Algoritme Decision Tree (C4.5)
title_sort pemodelan identifikasi trafik bittorrent dengan pendekatan correlation based feature selection (cfs) menggunakan algoritme decision tree (c4.5)
publisher Universitas Negeri Medan
publishDate 2021
url https://doaj.org/article/65bb0e8f136b4c7f9c072826ab21009d
work_keys_str_mv AT hesmiariayanti pemodelanidentifikasitrafikbittorrentdenganpendekatancorrelationbasedfeatureselectioncfsmenggunakanalgoritmedecisiontreec45
AT herusukoco pemodelanidentifikasitrafikbittorrentdenganpendekatancorrelationbasedfeatureselectioncfsmenggunakanalgoritmedecisiontreec45
AT shelvienidyaneyman pemodelanidentifikasitrafikbittorrentdenganpendekatancorrelationbasedfeatureselectioncfsmenggunakanalgoritmedecisiontreec45
_version_ 1718409163790352384