Lunar impact crater identification and age estimation with Chang’E data by deep and transfer learning

Using Chang’E data, the authors here identify more than 109,000 previously unrecognized lunar craters and date almost 19,000 craters based on transfer learning with deep neural networks. A new lunar crater database is derived and distributed to the planetary community.

Guardado en:
Detalles Bibliográficos
Autores principales: Chen Yang, Haishi Zhao, Lorenzo Bruzzone, Jon Atli Benediktsson, Yanchun Liang, Bin Liu, Xingguo Zeng, Renchu Guan, Chunlai Li, Ziyuan Ouyang
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/65bb490c6daa4866aab6382029e35f68
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Using Chang’E data, the authors here identify more than 109,000 previously unrecognized lunar craters and date almost 19,000 craters based on transfer learning with deep neural networks. A new lunar crater database is derived and distributed to the planetary community.