Lunar impact crater identification and age estimation with Chang’E data by deep and transfer learning

Using Chang’E data, the authors here identify more than 109,000 previously unrecognized lunar craters and date almost 19,000 craters based on transfer learning with deep neural networks. A new lunar crater database is derived and distributed to the planetary community.

Guardado en:
Detalles Bibliográficos
Autores principales: Chen Yang, Haishi Zhao, Lorenzo Bruzzone, Jon Atli Benediktsson, Yanchun Liang, Bin Liu, Xingguo Zeng, Renchu Guan, Chunlai Li, Ziyuan Ouyang
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/65bb490c6daa4866aab6382029e35f68
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:65bb490c6daa4866aab6382029e35f68
record_format dspace
spelling oai:doaj.org-article:65bb490c6daa4866aab6382029e35f682021-12-02T13:57:56ZLunar impact crater identification and age estimation with Chang’E data by deep and transfer learning10.1038/s41467-020-20215-y2041-1723https://doaj.org/article/65bb490c6daa4866aab6382029e35f682020-12-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-20215-yhttps://doaj.org/toc/2041-1723Using Chang’E data, the authors here identify more than 109,000 previously unrecognized lunar craters and date almost 19,000 craters based on transfer learning with deep neural networks. A new lunar crater database is derived and distributed to the planetary community.Chen YangHaishi ZhaoLorenzo BruzzoneJon Atli BenediktssonYanchun LiangBin LiuXingguo ZengRenchu GuanChunlai LiZiyuan OuyangNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-15 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Chen Yang
Haishi Zhao
Lorenzo Bruzzone
Jon Atli Benediktsson
Yanchun Liang
Bin Liu
Xingguo Zeng
Renchu Guan
Chunlai Li
Ziyuan Ouyang
Lunar impact crater identification and age estimation with Chang’E data by deep and transfer learning
description Using Chang’E data, the authors here identify more than 109,000 previously unrecognized lunar craters and date almost 19,000 craters based on transfer learning with deep neural networks. A new lunar crater database is derived and distributed to the planetary community.
format article
author Chen Yang
Haishi Zhao
Lorenzo Bruzzone
Jon Atli Benediktsson
Yanchun Liang
Bin Liu
Xingguo Zeng
Renchu Guan
Chunlai Li
Ziyuan Ouyang
author_facet Chen Yang
Haishi Zhao
Lorenzo Bruzzone
Jon Atli Benediktsson
Yanchun Liang
Bin Liu
Xingguo Zeng
Renchu Guan
Chunlai Li
Ziyuan Ouyang
author_sort Chen Yang
title Lunar impact crater identification and age estimation with Chang’E data by deep and transfer learning
title_short Lunar impact crater identification and age estimation with Chang’E data by deep and transfer learning
title_full Lunar impact crater identification and age estimation with Chang’E data by deep and transfer learning
title_fullStr Lunar impact crater identification and age estimation with Chang’E data by deep and transfer learning
title_full_unstemmed Lunar impact crater identification and age estimation with Chang’E data by deep and transfer learning
title_sort lunar impact crater identification and age estimation with chang’e data by deep and transfer learning
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/65bb490c6daa4866aab6382029e35f68
work_keys_str_mv AT chenyang lunarimpactcrateridentificationandageestimationwithchangedatabydeepandtransferlearning
AT haishizhao lunarimpactcrateridentificationandageestimationwithchangedatabydeepandtransferlearning
AT lorenzobruzzone lunarimpactcrateridentificationandageestimationwithchangedatabydeepandtransferlearning
AT jonatlibenediktsson lunarimpactcrateridentificationandageestimationwithchangedatabydeepandtransferlearning
AT yanchunliang lunarimpactcrateridentificationandageestimationwithchangedatabydeepandtransferlearning
AT binliu lunarimpactcrateridentificationandageestimationwithchangedatabydeepandtransferlearning
AT xingguozeng lunarimpactcrateridentificationandageestimationwithchangedatabydeepandtransferlearning
AT renchuguan lunarimpactcrateridentificationandageestimationwithchangedatabydeepandtransferlearning
AT chunlaili lunarimpactcrateridentificationandageestimationwithchangedatabydeepandtransferlearning
AT ziyuanouyang lunarimpactcrateridentificationandageestimationwithchangedatabydeepandtransferlearning
_version_ 1718392263125499904