Lunar impact crater identification and age estimation with Chang’E data by deep and transfer learning
Using Chang’E data, the authors here identify more than 109,000 previously unrecognized lunar craters and date almost 19,000 craters based on transfer learning with deep neural networks. A new lunar crater database is derived and distributed to the planetary community.
Guardado en:
Autores principales: | Chen Yang, Haishi Zhao, Lorenzo Bruzzone, Jon Atli Benediktsson, Yanchun Liang, Bin Liu, Xingguo Zeng, Renchu Guan, Chunlai Li, Ziyuan Ouyang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/65bb490c6daa4866aab6382029e35f68 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Large impact cratering during lunar magma ocean solidification
por: K. Miljković, et al.
Publicado: (2021) -
Identification of Multiscale Spatial Structure of Lunar Impact Crater: A Semivariogram Approach
por: Jiao Wang, et al.
Publicado: (2021) -
Properties of the lunar gravity assisted transfers from LEO to the retrograde-GEO
por: Bo-yong He, et al.
Publicado: (2021) -
Peering into lunar permanently shadowed regions with deep learning
por: V. T. Bickel, et al.
Publicado: (2021) -
Descent trajectory reconstruction and landing site positioning of Chang’E-4 on the lunar farside
por: Jianjun Liu, et al.
Publicado: (2019)