DNAH11 compound heterozygous variants cause heterotaxy and congenital heart disease.

Heterotaxy (HTX), a condition characterized by internal organs not being arranged as expected relative to each other and to the left-right axis, is often accompanied with congenital heart disease (CHD). The purpose was to detect the pathogenic variants in a Chinese family with HTX and CHD. A non-con...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Hong Xia, Xiangjun Huang, Sheng Deng, Hongbo Xu, Yan Yang, Xin Liu, Lamei Yuan, Hao Deng
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/65cd841ff16b41f79b1a85531f541223
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Heterotaxy (HTX), a condition characterized by internal organs not being arranged as expected relative to each other and to the left-right axis, is often accompanied with congenital heart disease (CHD). The purpose was to detect the pathogenic variants in a Chinese family with HTX and CHD. A non-consanguineous Han Chinese family with HTX and CHD, and 200 unrelated healthy subjects were enlisted. Exome sequencing and Sanger sequencing were applied to identify the genetic basis of the HTX family. Compound heterozygous variants, c.3426-1G>A and c.4306C>T (p.(Arg1436Trp)), in the dynein axonemal heavy chain 11 gene (DNAH11) were identified in the proband via exome sequencing and further confirmed by Sanger sequencing. Neither c.3426-1G>A nor c.4306C>T variant in the DNAH11 gene was detected in 200 healthy controls. The DNAH11 c.3426-1G>A variant was predicted as altering the acceptor splice site and most likely affecting splicing. The DNAH11 c.4306C>T variant was predicted to be damaging, which may reduce the phenotype severity. The compound heterozygous variants, c.3426-1G>A and c.4306C>T, in the DNAH11 gene might be the pathogenic alterations resulting in HTX and CHD in this family. These findings broaden the variant spectrum of the DNAH11 gene and increase knowledge used in genetic counseling for the HTX family.