Extended graphical lasso for multiple interaction networks for high dimensional omics data.
There has been a spate of interest in association networks in biological and medical research, for example, genetic interaction networks. In this paper, we propose a novel method, the extended joint hub graphical lasso (EDOHA), to estimate multiple related interaction networks for high dimensional o...
Guardado en:
Autores principales: | Yang Xu, Hongmei Jiang, Wenxin Jiang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/65e346a6cc5a4230839dcde22bd72f49 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Gene regulatory networks from multifactorial perturbations using Graphical Lasso: application to the DREAM4 challenge.
por: Patricia Menéndez, et al.
Publicado: (2010) -
Model selection for inferential models with high dimensional data: synthesis and graphical representation of multiple techniques
por: Eliana Lima, et al.
Publicado: (2021) -
Pruning Filters Base on Extending Filter Group Lasso
por: Zhihong Xie, et al.
Publicado: (2020) -
MuSA: a graphical user interface for multi-OMICs data integration in radiogenomic studies
por: Mario Zanfardino, et al.
Publicado: (2021) -
Graphic data sharing
por: Daniel Tena Parera
Publicado: (2019)