Influence of the Chromium Content in Low-Alloyed Cu–Cr Alloys on the Structural Changes, Phase Transformations and Properties in Equal-Channel Angular Pressing

The quantitative concentration of alloying elements in low-alloyed copper alloys is an important factor in forming electrical and mechanical characteristics. It is known that severe plastic deformation is accompanied by both a substantial refinement of the structure and changes in the kinetics of ph...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Denis A. Aksenov, Rashid N. Asfandiyarov, Georgy I. Raab, Elvira I. Fakhretdinova, Maria A. Shishkunova
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
SPD
Acceso en línea:https://doaj.org/article/65ead71c4d6141808b0a919134a04cc9
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The quantitative concentration of alloying elements in low-alloyed copper alloys is an important factor in forming electrical and mechanical characteristics. It is known that severe plastic deformation is accompanied by both a substantial refinement of the structure and changes in the kinetics of phase transformations during the deformation and the post-deformation thermal treatment. This paper presents the results of a comparative analysis of the Cu–0.2Cr and Cu–1.1Cr alloys subjected to equal-channel angular pressing at room temperature. The analysis was performed for the grain structure, solid solution, and second-phase particles using transmission electron microscopy, scanning electron microscopy, X-ray crystal analysis, and the small-angle diffraction method. It was found that the level of structure refinement and mechanical characteristics after equal-channel angular pressing was almost the same for both studied alloys. Post-deformation aging of the Cu–0.2Cr alloy leads to the development of polygonization and re-crystallization within it. The aging of the Cu–1.1Cr alloy shows a better thermal stability than that of the Cu–0.2Cr alloy. In the Cu–1.1Cr alloy, after aging, in comparison with Cu–0.2Cr, a denser-packed ensemble of fine particles with an average size of 54 ± 2 nm is formed. In this case, the average size of fragments is 270 ± 15 nm and the ultimate tensile strength reaches 485 MPa.