Evaluating the predictive power of different machine learning algorithms for groundwater salinity prediction of multi-layer coastal aquifers in the Mekong Delta, Vietnam
Groundwater salinization is considered as a major environmental problem in worldwide coastal areas, influencing ecosystems and human health. However, an accurate prediction of salinity concentration in groundwater remains a challenge due to the complexity of groundwater salinization processes and it...
Guardado en:
Autores principales: | Dang An Tran, Maki Tsujimura, Nam Thang Ha, Van Tam Nguyen, Doan Van Binh, Thanh Duc Dang, Quang-Van Doan, Dieu Tien Bui, Trieu Anh Ngoc, Le Vo Phu, Pham Thi Bich Thuc, Tien Dat Pham |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/65ec6764a24446f6949d5852315ad03f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Efficient Seismic Stability Analysis of Embankment Slopes Subjected to Water Level Changes Using Gradient Boosting Algorithms
por: Luqi Wang, et al.
Publicado: (2021) -
New transboundary water resources cooperation for Greater Mekong Subregion: the Lancang-Mekong Cooperation
por: Ren Junlin, et al.
Publicado: (2021) -
Mapping Population Distribution Based on XGBoost Using Multisource Data
por: Xin Zhao, et al.
Publicado: (2021) -
The effects of salinity on changes in characteristics of soils collected in a saline region of the Mekong Delta, Vietnam
por: Van Tan Lam, et al.
Publicado: (2021) -
A prediction method for water enrichment in aquifer based on GIS and coupled AHP–entropy model
por: Duan Huijun, et al.
Publicado: (2021)