Evaluating the predictive power of different machine learning algorithms for groundwater salinity prediction of multi-layer coastal aquifers in the Mekong Delta, Vietnam
Groundwater salinization is considered as a major environmental problem in worldwide coastal areas, influencing ecosystems and human health. However, an accurate prediction of salinity concentration in groundwater remains a challenge due to the complexity of groundwater salinization processes and it...
Enregistré dans:
Auteurs principaux: | Dang An Tran, Maki Tsujimura, Nam Thang Ha, Van Tam Nguyen, Doan Van Binh, Thanh Duc Dang, Quang-Van Doan, Dieu Tien Bui, Trieu Anh Ngoc, Le Vo Phu, Pham Thi Bich Thuc, Tien Dat Pham |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Elsevier
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/65ec6764a24446f6949d5852315ad03f |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Efficient Seismic Stability Analysis of Embankment Slopes Subjected to Water Level Changes Using Gradient Boosting Algorithms
par: Luqi Wang, et autres
Publié: (2021) -
New transboundary water resources cooperation for Greater Mekong Subregion: the Lancang-Mekong Cooperation
par: Ren Junlin, et autres
Publié: (2021) -
Mapping Population Distribution Based on XGBoost Using Multisource Data
par: Xin Zhao, et autres
Publié: (2021) -
The effects of salinity on changes in characteristics of soils collected in a saline region of the Mekong Delta, Vietnam
par: Van Tan Lam, et autres
Publié: (2021) -
A prediction method for water enrichment in aquifer based on GIS and coupled AHP–entropy model
par: Duan Huijun, et autres
Publié: (2021)