The Alexandroff-Urysohn Square and the Fixed Point Property

Every continuous function of the Alexandroff-Urysohn Square into itself has a fixed point. This follows from G. S. Young's general theorem (1946) that establishes the fixed-point property for every arcwise connected Hausdorff space in which each monotone increasing sequence of arcs is contai...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: M. M. Marsh, T. H. Foregger, C. L. Hagopian
Formato: article
Lenguaje:EN
Publicado: SpringerOpen 2009
Materias:
Acceso en línea:https://doaj.org/article/65f8bacd79694b5bb987953cf162c3b3
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Every continuous function of the Alexandroff-Urysohn Square into itself has a fixed point. This follows from G. S. Young's general theorem (1946) that establishes the fixed-point property for every arcwise connected Hausdorff space in which each monotone increasing sequence of arcs is contained in an arc. Here we give a short proof based on the structure of the Alexandroff-Urysohn Square.