The Alexandroff-Urysohn Square and the Fixed Point Property

Every continuous function of the Alexandroff-Urysohn Square into itself has a fixed point. This follows from G. S. Young's general theorem (1946) that establishes the fixed-point property for every arcwise connected Hausdorff space in which each monotone increasing sequence of arcs is contai...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: M. M. Marsh, T. H. Foregger, C. L. Hagopian
Format: article
Langue:EN
Publié: SpringerOpen 2009
Sujets:
Accès en ligne:https://doaj.org/article/65f8bacd79694b5bb987953cf162c3b3
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:Every continuous function of the Alexandroff-Urysohn Square into itself has a fixed point. This follows from G. S. Young's general theorem (1946) that establishes the fixed-point property for every arcwise connected Hausdorff space in which each monotone increasing sequence of arcs is contained in an arc. Here we give a short proof based on the structure of the Alexandroff-Urysohn Square.