The Alexandroff-Urysohn Square and the Fixed Point Property

Every continuous function of the Alexandroff-Urysohn Square into itself has a fixed point. This follows from G. S. Young's general theorem (1946) that establishes the fixed-point property for every arcwise connected Hausdorff space in which each monotone increasing sequence of arcs is contai...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: M. M. Marsh, T. H. Foregger, C. L. Hagopian
Formato: article
Lenguaje:EN
Publicado: SpringerOpen 2009
Materias:
Acceso en línea:https://doaj.org/article/65f8bacd79694b5bb987953cf162c3b3
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:65f8bacd79694b5bb987953cf162c3b3
record_format dspace
spelling oai:doaj.org-article:65f8bacd79694b5bb987953cf162c3b32021-12-02T11:31:56ZThe Alexandroff-Urysohn Square and the Fixed Point Property10.1155/2009/3108321687-18201687-1812https://doaj.org/article/65f8bacd79694b5bb987953cf162c3b32009-01-01T00:00:00Zhttp://dx.doi.org/10.1155/2009/310832https://doaj.org/toc/1687-1820https://doaj.org/toc/1687-1812Every continuous function of the Alexandroff-Urysohn Square into itself has a fixed point. This follows from G. S. Young's general theorem (1946) that establishes the fixed-point property for every arcwise connected Hausdorff space in which each monotone increasing sequence of arcs is contained in an arc. Here we give a short proof based on the structure of the Alexandroff-Urysohn Square. M. M. MarshT. H. ForeggerC. L. HagopianSpringerOpenarticleApplied mathematics. Quantitative methodsT57-57.97AnalysisQA299.6-433ENFixed Point Theory and Applications, Vol 2009 (2009)
institution DOAJ
collection DOAJ
language EN
topic Applied mathematics. Quantitative methods
T57-57.97
Analysis
QA299.6-433
spellingShingle Applied mathematics. Quantitative methods
T57-57.97
Analysis
QA299.6-433
M. M. Marsh
T. H. Foregger
C. L. Hagopian
The Alexandroff-Urysohn Square and the Fixed Point Property
description Every continuous function of the Alexandroff-Urysohn Square into itself has a fixed point. This follows from G. S. Young's general theorem (1946) that establishes the fixed-point property for every arcwise connected Hausdorff space in which each monotone increasing sequence of arcs is contained in an arc. Here we give a short proof based on the structure of the Alexandroff-Urysohn Square.
format article
author M. M. Marsh
T. H. Foregger
C. L. Hagopian
author_facet M. M. Marsh
T. H. Foregger
C. L. Hagopian
author_sort M. M. Marsh
title The Alexandroff-Urysohn Square and the Fixed Point Property
title_short The Alexandroff-Urysohn Square and the Fixed Point Property
title_full The Alexandroff-Urysohn Square and the Fixed Point Property
title_fullStr The Alexandroff-Urysohn Square and the Fixed Point Property
title_full_unstemmed The Alexandroff-Urysohn Square and the Fixed Point Property
title_sort alexandroff-urysohn square and the fixed point property
publisher SpringerOpen
publishDate 2009
url https://doaj.org/article/65f8bacd79694b5bb987953cf162c3b3
work_keys_str_mv AT mmmarsh thealexandroffurysohnsquareandthefixedpointproperty
AT thforegger thealexandroffurysohnsquareandthefixedpointproperty
AT clhagopian thealexandroffurysohnsquareandthefixedpointproperty
AT mmmarsh alexandroffurysohnsquareandthefixedpointproperty
AT thforegger alexandroffurysohnsquareandthefixedpointproperty
AT clhagopian alexandroffurysohnsquareandthefixedpointproperty
_version_ 1718395822959230976