The Alexandroff-Urysohn Square and the Fixed Point Property
Every continuous function of the Alexandroff-Urysohn Square into itself has a fixed point. This follows from G. S. Young's general theorem (1946) that establishes the fixed-point property for every arcwise connected Hausdorff space in which each monotone increasing sequence of arcs is contai...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
SpringerOpen
2009
|
Materias: | |
Acceso en línea: | https://doaj.org/article/65f8bacd79694b5bb987953cf162c3b3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:65f8bacd79694b5bb987953cf162c3b3 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:65f8bacd79694b5bb987953cf162c3b32021-12-02T11:31:56ZThe Alexandroff-Urysohn Square and the Fixed Point Property10.1155/2009/3108321687-18201687-1812https://doaj.org/article/65f8bacd79694b5bb987953cf162c3b32009-01-01T00:00:00Zhttp://dx.doi.org/10.1155/2009/310832https://doaj.org/toc/1687-1820https://doaj.org/toc/1687-1812Every continuous function of the Alexandroff-Urysohn Square into itself has a fixed point. This follows from G. S. Young's general theorem (1946) that establishes the fixed-point property for every arcwise connected Hausdorff space in which each monotone increasing sequence of arcs is contained in an arc. Here we give a short proof based on the structure of the Alexandroff-Urysohn Square. M. M. MarshT. H. ForeggerC. L. HagopianSpringerOpenarticleApplied mathematics. Quantitative methodsT57-57.97AnalysisQA299.6-433ENFixed Point Theory and Applications, Vol 2009 (2009) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Applied mathematics. Quantitative methods T57-57.97 Analysis QA299.6-433 |
spellingShingle |
Applied mathematics. Quantitative methods T57-57.97 Analysis QA299.6-433 M. M. Marsh T. H. Foregger C. L. Hagopian The Alexandroff-Urysohn Square and the Fixed Point Property |
description |
Every continuous function of the Alexandroff-Urysohn Square into itself has a fixed point. This follows from G. S. Young's general theorem (1946) that establishes the fixed-point property for every arcwise connected Hausdorff space in which each monotone increasing sequence of arcs is contained in an arc. Here we give a short proof based on the structure of the Alexandroff-Urysohn Square. |
format |
article |
author |
M. M. Marsh T. H. Foregger C. L. Hagopian |
author_facet |
M. M. Marsh T. H. Foregger C. L. Hagopian |
author_sort |
M. M. Marsh |
title |
The Alexandroff-Urysohn Square and the Fixed Point Property |
title_short |
The Alexandroff-Urysohn Square and the Fixed Point Property |
title_full |
The Alexandroff-Urysohn Square and the Fixed Point Property |
title_fullStr |
The Alexandroff-Urysohn Square and the Fixed Point Property |
title_full_unstemmed |
The Alexandroff-Urysohn Square and the Fixed Point Property |
title_sort |
alexandroff-urysohn square and the fixed point property |
publisher |
SpringerOpen |
publishDate |
2009 |
url |
https://doaj.org/article/65f8bacd79694b5bb987953cf162c3b3 |
work_keys_str_mv |
AT mmmarsh thealexandroffurysohnsquareandthefixedpointproperty AT thforegger thealexandroffurysohnsquareandthefixedpointproperty AT clhagopian thealexandroffurysohnsquareandthefixedpointproperty AT mmmarsh alexandroffurysohnsquareandthefixedpointproperty AT thforegger alexandroffurysohnsquareandthefixedpointproperty AT clhagopian alexandroffurysohnsquareandthefixedpointproperty |
_version_ |
1718395822959230976 |