The Alexandroff-Urysohn Square and the Fixed Point Property
Every continuous function of the Alexandroff-Urysohn Square into itself has a fixed point. This follows from G. S. Young's general theorem (1946) that establishes the fixed-point property for every arcwise connected Hausdorff space in which each monotone increasing sequence of arcs is contai...
Guardado en:
Autores principales: | M. M. Marsh, T. H. Foregger, C. L. Hagopian |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
SpringerOpen
2009
|
Materias: | |
Acceso en línea: | https://doaj.org/article/65f8bacd79694b5bb987953cf162c3b3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Epsilon Nielsen fixed point theory
por: Brown Robert F
Publicado: (2006) -
Fixed point indices and manifolds with collars
por: Daniel Henry Gottlieb, et al.
Publicado: (2006) -
Fixed Points for Pseudocontractive Mappings on Unbounded Domains
por: García-Falset Jesús, et al.
Publicado: (2010) -
Some Generalizations of Fixed Point Theorems in Cone Metric Spaces
por: J. O. Olaleru
Publicado: (2009) -
Fixed Point Theorems for Monotone Mappings on Partial Metric Spaces
por: Altun Ishak, et al.
Publicado: (2011)