The Alexandroff-Urysohn Square and the Fixed Point Property
Every continuous function of the Alexandroff-Urysohn Square into itself has a fixed point. This follows from G. S. Young's general theorem (1946) that establishes the fixed-point property for every arcwise connected Hausdorff space in which each monotone increasing sequence of arcs is contai...
Enregistré dans:
Auteurs principaux: | M. M. Marsh, T. H. Foregger, C. L. Hagopian |
---|---|
Format: | article |
Langue: | EN |
Publié: |
SpringerOpen
2009
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/65f8bacd79694b5bb987953cf162c3b3 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Epsilon Nielsen fixed point theory
par: Brown Robert F
Publié: (2006) -
Fixed point indices and manifolds with collars
par: Daniel Henry Gottlieb, et autres
Publié: (2006) -
Fixed Points for Pseudocontractive Mappings on Unbounded Domains
par: García-Falset Jesús, et autres
Publié: (2010) -
Some Generalizations of Fixed Point Theorems in Cone Metric Spaces
par: J. O. Olaleru
Publié: (2009) -
Fixed Point Theorems for Monotone Mappings on Partial Metric Spaces
par: Altun Ishak, et autres
Publié: (2011)