Simulated Annealing Assisted Sparse Array Selection Utilizing Deep Learning
This paper proposes simulated annealing (SA) assisted deep learning (DL) based sparse array selection approach. Conventional DL-based antenna selectors are primarily data-driven techniques. As a result, the required dataset is generated by listing all possible combinations of selecting <inline-fo...
Guardado en:
Autores principales: | Steven Wandale, Koichi Ichige |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6641cfa0fa3f4c9eb3403a62097c2617 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Multi-Dimensional Angle of Arrival Estimation by Circular Phased Adaptive Array Antennas
por: Bassim Sayed Mohammed
Publicado: (2017) -
Accurate Reconstruction of the Radiation of Sparse Sources from a Small Set of Near-Field Measurements by Means of a Smooth-Weighted Norm for Cluster-Sparsity Problems
por: Daniele Pinchera, et al.
Publicado: (2021) -
Block Newtonised orthogonal matching pursuit for off‐grid DOA estimation in the presence of unknown mutual coupling
por: Wen‐Gen Tang, et al.
Publicado: (2021) -
Directive Multiband Antenna Based on Rectangular Loop Array and Dumbbell-Shaped Slot Radiator
por: Jose Alfredo Tirado-Mendez, et al.
Publicado: (2021) -
Sparse Automotive MIMO Radar for Super-Resolution Single Snapshot DOA Estimation With Mutual Coupling
por: Navid Amani, et al.
Publicado: (2021)