Revisiting the conformally soft sector with celestial diamonds
Abstract Celestial diamonds encode the structure of global conformal multiplets in 2D celestial CFT and offer a natural language for describing the conformally soft sector. The operators appearing at their left and right corners give rise to conformally soft factorization theorems, the bottom corner...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
SpringerOpen
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/664b2af36c204d3097483ff6ba67e484 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Celestial diamonds encode the structure of global conformal multiplets in 2D celestial CFT and offer a natural language for describing the conformally soft sector. The operators appearing at their left and right corners give rise to conformally soft factorization theorems, the bottom corners correspond to conserved charges, and the top corners to conformal dressings. We show that conformally soft charges can be expressed in terms of light ray integrals that select modes of the appropriate conformal weights. They reside at the bottom corners of memory diamonds, and ascend to generalized currents. We then identify the top corners of the associated Goldstone diamonds with conformal Faddeev-Kulish dressings and compute the sub-leading conformally soft dressings in gauge theory and gravity which are important for finding nontrivial central extensions. Finally, we combine these ingredients to speculate on 2D effective descriptions for the conformally soft sector of celestial CFT. |
---|