Low-cost, Low-bias and Low-input RNA-seq with High Experimental Verifiability based on Semiconductor Sequencing
Abstract Low-input RNA-seq is powerful to represent the gene expression profiles with limited number of cells, especially when single-cell variations are not the aim. However, pre-amplification-based and molecule index-based library construction methods boost bias or require higher throughput. Here...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6658cb2a6d154f31904cc68f248dfdad |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Low-input RNA-seq is powerful to represent the gene expression profiles with limited number of cells, especially when single-cell variations are not the aim. However, pre-amplification-based and molecule index-based library construction methods boost bias or require higher throughput. Here we demonstrate a simple, low-cost, low-bias and low-input RNA-seq with ion torrent semiconductor sequencing (LIEA RNA-seq). We also developed highly accurate and error-tolerant spliced mapping algorithm FANSe2splice to accurately map the single-ended reads to the reference genome with better experimental verifiability than the previous spliced mappers. Combining the experimental and computational advancements, our solution is comparable with the bulk mRNA-seq in quantification, reliably detects splice junctions and minimizes the bias with much less mappable reads. |
---|