Low-cost, Low-bias and Low-input RNA-seq with High Experimental Verifiability based on Semiconductor Sequencing
Abstract Low-input RNA-seq is powerful to represent the gene expression profiles with limited number of cells, especially when single-cell variations are not the aim. However, pre-amplification-based and molecule index-based library construction methods boost bias or require higher throughput. Here...
Guardado en:
Autores principales: | Zhibiao Mai, Chuanle Xiao, Jingjie Jin, Gong Zhang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6658cb2a6d154f31904cc68f248dfdad |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Single-cell RNA-seq of rheumatoid arthritis synovial tissue using low-cost microfluidic instrumentation
por: William Stephenson, et al.
Publicado: (2018) -
Verifying explainability of a deep learning tissue classifier trained on RNA-seq data
por: Melvyn Yap, et al.
Publicado: (2021) -
Asynchronous Digital Low-Dropout Regulator With Dual Adjustment Mode in Ultra-Low Voltage Input
por: Wei-Bin Yang, et al.
Publicado: (2021) -
Reflections on the cost of "low-cost" whole genome sequencing: framing the health policy debate.
por: Timothy Caulfield, et al.
Publicado: (2013) -
Simplified synthetic routes for low cost and high photovoltaic performance n-type organic semiconductor acceptors
por: Xiaojun Li, et al.
Publicado: (2019)