Deep learning-based virtual cytokeratin staining of gastric carcinomas to measure tumor–stroma ratio
Abstract The tumor–stroma ratio (TSR) determined by pathologists is subject to intra- and inter-observer variability. We aimed to develop a computational quantification method of TSR using deep learning-based virtual cytokeratin staining algorithms. Patients with 373 advanced (stage III [n = 171] an...
Guardado en:
Autores principales: | Yiyu Hong, You Jeong Heo, Binnari Kim, Donghwan Lee, Soomin Ahn, Sang Yun Ha, Insuk Sohn, Kyoung-Mee Kim |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/665a23e325834b819fadac98a5eb0531 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Reproduction of molecular subtypes of gastric adenocarcinoma by transcriptome sequencing of archival tissue
por: You Jeong Heo, et al.
Publicado: (2019) -
Low Tumor-to-Stroma Ratio Reflects Protective Role of Stroma against Prostate Cancer Progression
por: Paulina Nastały, et al.
Publicado: (2021) -
Does Neutrophil to Lymphocyte Ratio Have a Role in Identifying Cytokeratin 19-Expressing Hepatocellular Carcinoma?
por: Chao-Wei Lee, et al.
Publicado: (2021) -
Filling the gap between microscopic and automated analysis of the tumor-stroma ratio
por: Gabi Pelt, et al.
Publicado: (2020) -
Impact of Tumor–Stroma Ratio on the Prognosis of Colorectal Cancer: A Systematic Review
por: Jinlai Gao, et al.
Publicado: (2021)