New Solitary and Periodic Wave Solutions of (n + 1)-Dimensional Fractional Order Equations Modeling Fluid Dynamics

In this study, first, fractional derivative definitions in the literature are examined and their disadvantages are explained in detail. Then, it seems appropriate to apply the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semant...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Sadullah Bulut, Mesut Karabacak, Hijaz Ahmad, Sameh Askar
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/666571dd87304f148e54946b4198560f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:666571dd87304f148e54946b4198560f
record_format dspace
spelling oai:doaj.org-article:666571dd87304f148e54946b4198560f2021-11-25T19:06:04ZNew Solitary and Periodic Wave Solutions of (n + 1)-Dimensional Fractional Order Equations Modeling Fluid Dynamics10.3390/sym131120172073-8994https://doaj.org/article/666571dd87304f148e54946b4198560f2021-10-01T00:00:00Zhttps://www.mdpi.com/2073-8994/13/11/2017https://doaj.org/toc/2073-8994In this study, first, fractional derivative definitions in the literature are examined and their disadvantages are explained in detail. Then, it seems appropriate to apply the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mfrac><msup><mi>G</mi><mo>′</mo></msup><mi>G</mi></mfrac><mo>)</mo></mrow></semantics></math></inline-formula>-expansion method under Atangana’s definition of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula>-conformable fractional derivative to obtain the exact solutions of the space–time fractional differential equations, which have attracted the attention of many researchers recently. The method is applied to different versions of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula>-dimensional Kadomtsev–Petviashvili equations and new exact solutions of these equations depending on the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula> parameter are acquired. If the parameter values in the new solutions obtained are selected appropriately, 2D and 3D graphs are plotted. Thus, the decay and symmetry properties of solitary wave solutions in a nonlocal shallow water wave model are investigated. It is also shown that all such solitary wave solutions are symmetrical on both sides of the apex. In addition, a close relationship is established between symmetric and propagated wave solutions.Sadullah BulutMesut KarabacakHijaz AhmadSameh AskarMDPI AGarticle<i>β</i>-conformable fractional derivative of Atangana(<i>G</i>′/<i>G</i>)-expansion methodspace–time fractional differential equationswave solutionMathematicsQA1-939ENSymmetry, Vol 13, Iss 2017, p 2017 (2021)
institution DOAJ
collection DOAJ
language EN
topic <i>β</i>-conformable fractional derivative of Atangana
(<i>G</i>′/<i>G</i>)-expansion method
space–time fractional differential equations
wave solution
Mathematics
QA1-939
spellingShingle <i>β</i>-conformable fractional derivative of Atangana
(<i>G</i>′/<i>G</i>)-expansion method
space–time fractional differential equations
wave solution
Mathematics
QA1-939
Sadullah Bulut
Mesut Karabacak
Hijaz Ahmad
Sameh Askar
New Solitary and Periodic Wave Solutions of (n + 1)-Dimensional Fractional Order Equations Modeling Fluid Dynamics
description In this study, first, fractional derivative definitions in the literature are examined and their disadvantages are explained in detail. Then, it seems appropriate to apply the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mfrac><msup><mi>G</mi><mo>′</mo></msup><mi>G</mi></mfrac><mo>)</mo></mrow></semantics></math></inline-formula>-expansion method under Atangana’s definition of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula>-conformable fractional derivative to obtain the exact solutions of the space–time fractional differential equations, which have attracted the attention of many researchers recently. The method is applied to different versions of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula>-dimensional Kadomtsev–Petviashvili equations and new exact solutions of these equations depending on the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula> parameter are acquired. If the parameter values in the new solutions obtained are selected appropriately, 2D and 3D graphs are plotted. Thus, the decay and symmetry properties of solitary wave solutions in a nonlocal shallow water wave model are investigated. It is also shown that all such solitary wave solutions are symmetrical on both sides of the apex. In addition, a close relationship is established between symmetric and propagated wave solutions.
format article
author Sadullah Bulut
Mesut Karabacak
Hijaz Ahmad
Sameh Askar
author_facet Sadullah Bulut
Mesut Karabacak
Hijaz Ahmad
Sameh Askar
author_sort Sadullah Bulut
title New Solitary and Periodic Wave Solutions of (n + 1)-Dimensional Fractional Order Equations Modeling Fluid Dynamics
title_short New Solitary and Periodic Wave Solutions of (n + 1)-Dimensional Fractional Order Equations Modeling Fluid Dynamics
title_full New Solitary and Periodic Wave Solutions of (n + 1)-Dimensional Fractional Order Equations Modeling Fluid Dynamics
title_fullStr New Solitary and Periodic Wave Solutions of (n + 1)-Dimensional Fractional Order Equations Modeling Fluid Dynamics
title_full_unstemmed New Solitary and Periodic Wave Solutions of (n + 1)-Dimensional Fractional Order Equations Modeling Fluid Dynamics
title_sort new solitary and periodic wave solutions of (n + 1)-dimensional fractional order equations modeling fluid dynamics
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/666571dd87304f148e54946b4198560f
work_keys_str_mv AT sadullahbulut newsolitaryandperiodicwavesolutionsofn1dimensionalfractionalorderequationsmodelingfluiddynamics
AT mesutkarabacak newsolitaryandperiodicwavesolutionsofn1dimensionalfractionalorderequationsmodelingfluiddynamics
AT hijazahmad newsolitaryandperiodicwavesolutionsofn1dimensionalfractionalorderequationsmodelingfluiddynamics
AT samehaskar newsolitaryandperiodicwavesolutionsofn1dimensionalfractionalorderequationsmodelingfluiddynamics
_version_ 1718410282110287872