New Solitary and Periodic Wave Solutions of (n + 1)-Dimensional Fractional Order Equations Modeling Fluid Dynamics
In this study, first, fractional derivative definitions in the literature are examined and their disadvantages are explained in detail. Then, it seems appropriate to apply the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semant...
Guardado en:
Autores principales: | Sadullah Bulut, Mesut Karabacak, Hijaz Ahmad, Sameh Askar |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/666571dd87304f148e54946b4198560f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Separate Fractional (<i>p</i>,<i>q</i>)-Integrodifference Equations via Nonlocal Fractional (<i>p</i>,<i>q</i>)-Integral Boundary Conditions
por: Thongchai Dumrongpokaphan, et al.
Publicado: (2021) -
Reachability and Observability of Positive Linear Electrical Circuits Systems Described by Generalized Fractional Derivatives
por: Tong Yuan, et al.
Publicado: (2021) -
Analysis and Optimal Control of <i>φ</i>-Hilfer Fractional Semilinear Equations Involving Nonlocal Impulsive Conditions
por: Sarra Guechi, et al.
Publicado: (2021) -
Fractionation of Lycopodiaceae Alkaloids and Evaluation of Their Anticholinesterase and Cytotoxic Activities
por: Aleksandra Dymek, et al.
Publicado: (2021) -
Characterization of <i>Haemophilus influenzae</i> Strains with Non-Enzymatic Resistance to β-Lactam Antibiotics Caused by Mutations in the PBP3 Gene in the Czech Republic in 2010–2018
por: Vladislav Jakubu, et al.
Publicado: (2021)