Optimal hyperparameter tuning of random forests for estimating causal treatment effects
Recent studies have expanded the focus of machine learning methods like random forests beyond prediction. They have found utility in the area of causal inference by using it to estimate propensity scores. It has also been established in the literature that tuning the hyperparameter values of rando...
Guardado en:
Autores principales: | Lateef Amusa, Delia North, Temesgen Zewotir |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Prince of Songkla University
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/66666c37aa284b68b145f52e104a4618 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
¿Qué son las puntuaciones de propensión?
por: Ojeda,Dagoberto, et al.
Publicado: (2016) -
A statistical simulation method for causality inference of Boolean variables
por: WenJun Zhang
Publicado: (2021) -
Causality inference of linearly correlated variables: The statistical simulation and regression method
por: WenJun Zhang
Publicado: (2021) -
Causality inference of nominal variables: A statistical simulation method
por: WenJun Zhang
Publicado: (2021) -
Development of prediction model of steel fiber-reinforced concrete compressive strength using random forest algorithm combined with hyperparameter tuning and k-fold cross-validation
por: Nadia Moneem Al-Abdaly, et al.
Publicado: (2021)