Optimal hyperparameter tuning of random forests for estimating causal treatment effects

Recent studies have expanded the focus of machine learning methods like random forests beyond prediction. They have found utility in the area of causal inference by using it to estimate propensity scores. It has also been established in the literature that tuning the hyperparameter values of rando...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Lateef Amusa, Delia North, Temesgen Zewotir
Formato: article
Lenguaje:EN
Publicado: Prince of Songkla University 2021
Materias:
T
Q
Acceso en línea:https://doaj.org/article/66666c37aa284b68b145f52e104a4618
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

Ejemplares similares