Occupancy heat gain detection and prediction using deep learning approach for reducing building energy demand
The use of fixed or scheduled setpoints combined with varying occupancy patterns in buildings could lead to spaces being over or under-conditioned, which may lead to significant waste in energy consumption. The present study aims to develop a vision-based deep learning method for real-time occupancy...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
SDEWES Centre
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/666ffb3b601a4ba6b268a36b46d25813 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:666ffb3b601a4ba6b268a36b46d25813 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:666ffb3b601a4ba6b268a36b46d258132021-11-20T09:32:48ZOccupancy heat gain detection and prediction using deep learning approach for reducing building energy demand1848-925710.13044/j.sdewes.d8.0378https://doaj.org/article/666ffb3b601a4ba6b268a36b46d258132021-09-01T00:00:00Z http://www.sdewes.org/jsdewes/pid8.0378 https://doaj.org/toc/1848-9257The use of fixed or scheduled setpoints combined with varying occupancy patterns in buildings could lead to spaces being over or under-conditioned, which may lead to significant waste in energy consumption. The present study aims to develop a vision-based deep learning method for real-time occupancy activity detection and recognition. The method enables predicting and generating real-time heat gain data, which can inform building energy management systems and heating, ventilation, and air-conditioning (HVAC) controls. A faster region-based convolutional neural network was developed, trained and deployed to an artificial intelligence-powered camera. For the initial analysis, an experimental test was performed within a selected case study building's office space. Average detection accuracy of 92.2% was achieved for all activities. Using building energy simulation, the case study building was simulated with both ‘static’ and deep learning influenced profiles to assess the potential energy savings that can be achieved. The work has shown that the proposed approach can better estimate the occupancy internal heat gains for optimising the operations of building HVAC systems.Paige Wenbin TienShuangyu WeiJohn CalautitJo DarkwaChristopher WoodSDEWES Centrearticleartificial intelligencedeep learningenergy managementoccupancy detectionactivity detectionhvac system.TechnologyTEconomic growth, development, planningHD72-88ENJournal of Sustainable Development of Energy, Water and Environment Systems, Vol 9, Iss 3, Pp 1-31 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
artificial intelligence deep learning energy management occupancy detection activity detection hvac system. Technology T Economic growth, development, planning HD72-88 |
spellingShingle |
artificial intelligence deep learning energy management occupancy detection activity detection hvac system. Technology T Economic growth, development, planning HD72-88 Paige Wenbin Tien Shuangyu Wei John Calautit Jo Darkwa Christopher Wood Occupancy heat gain detection and prediction using deep learning approach for reducing building energy demand |
description |
The use of fixed or scheduled setpoints combined with varying occupancy patterns in buildings could lead to spaces being over or under-conditioned, which may lead to significant waste in energy consumption. The present study aims to develop a vision-based deep learning method for real-time occupancy activity detection and recognition. The method enables predicting and generating real-time heat gain data, which can inform building energy management systems and heating, ventilation, and air-conditioning (HVAC) controls. A faster region-based convolutional neural network was developed, trained and deployed to an artificial intelligence-powered camera. For the initial analysis, an experimental test was performed within a selected case study building's office space. Average detection accuracy of 92.2% was achieved for all activities. Using building energy simulation, the case study building was simulated with both ‘static’ and deep learning influenced profiles to assess the potential energy savings that can be achieved. The work has shown that the proposed approach can better estimate the occupancy internal heat gains for optimising the operations of building HVAC systems. |
format |
article |
author |
Paige Wenbin Tien Shuangyu Wei John Calautit Jo Darkwa Christopher Wood |
author_facet |
Paige Wenbin Tien Shuangyu Wei John Calautit Jo Darkwa Christopher Wood |
author_sort |
Paige Wenbin Tien |
title |
Occupancy heat gain detection and prediction using deep learning approach for reducing building energy demand |
title_short |
Occupancy heat gain detection and prediction using deep learning approach for reducing building energy demand |
title_full |
Occupancy heat gain detection and prediction using deep learning approach for reducing building energy demand |
title_fullStr |
Occupancy heat gain detection and prediction using deep learning approach for reducing building energy demand |
title_full_unstemmed |
Occupancy heat gain detection and prediction using deep learning approach for reducing building energy demand |
title_sort |
occupancy heat gain detection and prediction using deep learning approach for reducing building energy demand |
publisher |
SDEWES Centre |
publishDate |
2021 |
url |
https://doaj.org/article/666ffb3b601a4ba6b268a36b46d25813 |
work_keys_str_mv |
AT paigewenbintien occupancyheatgaindetectionandpredictionusingdeeplearningapproachforreducingbuildingenergydemand AT shuangyuwei occupancyheatgaindetectionandpredictionusingdeeplearningapproachforreducingbuildingenergydemand AT johncalautit occupancyheatgaindetectionandpredictionusingdeeplearningapproachforreducingbuildingenergydemand AT jodarkwa occupancyheatgaindetectionandpredictionusingdeeplearningapproachforreducingbuildingenergydemand AT christopherwood occupancyheatgaindetectionandpredictionusingdeeplearningapproachforreducingbuildingenergydemand |
_version_ |
1718419428959322112 |