Occupancy heat gain detection and prediction using deep learning approach for reducing building energy demand
The use of fixed or scheduled setpoints combined with varying occupancy patterns in buildings could lead to spaces being over or under-conditioned, which may lead to significant waste in energy consumption. The present study aims to develop a vision-based deep learning method for real-time occupancy...
Guardado en:
Autores principales: | Paige Wenbin Tien, Shuangyu Wei, John Calautit, Jo Darkwa, Christopher Wood |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
SDEWES Centre
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/666ffb3b601a4ba6b268a36b46d25813 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Multi-Agent Reinforcement Learning Approach to Price and Comfort Optimization in HVAC-Systems
por: Christian Blad, et al.
Publicado: (2021) -
Detection of Malignant Melanoma Using Artificial Intelligence: An Observational Study of Diagnostic Accuracy
por: Michael Phillips, et al.
Publicado: (2019) -
A study on implementation of real-time intelligent video surveillance system based on embedded module
por: Jin Su Kim, et al.
Publicado: (2021) -
Green Building Energy Cost Optimization With Deep Belief Network and Firefly Algorithm
por: Yan Liao, et al.
Publicado: (2021) -
Small-Sized Vehicle Detection in Remote Sensing Image Based on Keypoint Detection
por: Lijian Yu, et al.
Publicado: (2021)