Heuristic machinery for thermodynamic studies of SU(N) fermions with neural networks
The detection of the effects of spin symmetry in momentum distribution of an SU(N)-symmetric Fermi gas has remained challenging. Here, the authors use supervised machine learning to connect the spin multiplicity to thermodynamic quantities associated with different parts of the momentum distribution...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/66743b77dd114252857f7fdcad5029de |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | The detection of the effects of spin symmetry in momentum distribution of an SU(N)-symmetric Fermi gas has remained challenging. Here, the authors use supervised machine learning to connect the spin multiplicity to thermodynamic quantities associated with different parts of the momentum distribution. |
---|